The Alternating Group Generated by 3-Cycles

Henri Mühle ${ }^{1}$ and Philippe Nadeau ${ }^{2}$

${ }^{1}$ Technische Universität Dresden, Institut für Algebra, 01069 Dresden, Germany. ${ }^{2}$ Université de Lyon, CNRS, ICJ UMR 5208, F-69622 Villeurbanne cedex, France.

Framework

Generated group: a pair (G, A) with G a group and $A \subseteq$ G a set generating G as a monoid.
Assume in addition that A is closed under G conjugation. Let $e \in G$ be the identity.

Let $[n]=\{1,2, \ldots, n\}$.

Length Function and Prefix Order

Let $g, h \in G$.
A-Length: $\ell_{A}(g)=\min \left\{k \mid g=a_{1} a_{2} \cdots a_{k}, a_{i} \in A\right\}$.
A-Prefix order: $g \leq_{A} h$ if $\ell_{A}(h)=\ell_{A}(g)+\ell_{A}\left(g^{-1} h\right)$.

The Alternating Group Generated by 3-Cycles

Let $G=\mathfrak{A}_{N}=\left\{g \in \mathfrak{S}_{N} \mid \operatorname{sgn}(g)=1\right\}$, and $A=\{(i j k),(i k j) \mid 1 \leq i<j<k \leq N\}$.
Write ℓ_{3} instead of ℓ_{A}, and Red_{3} instead of Red_{A}

Let $g \in \mathfrak{A}_{N}$ and let ocyc (g) denote the number of odd cycles of g.
Proposition 1 (Mühle \& Nadeau, 2017) We have $\ell_{3}(g)=\frac{N-o c y c(g)}{2}$.

Also: Herzog \& Reid, 1976

Interval Structure

For $g \in G$ study the interval $[e, g]_{A}$ in $\left(G, \leq_{A}\right)$.

Enumeration

Fix $g \in G$.
m-multichain: m-tuple $\left(g_{1}, g_{2}, \ldots, g_{m}\right)$ with $g_{1} \leq_{A} g_{2} \leq_{A}$ $\cdots \leq_{A} g_{m} \leq_{A} g$.
Zeta polynomial: $\mathscr{Z}_{g}(m)$ counts $m-1$-multichains.
Rank jump enumeration: $\mathscr{R}_{g}\left(m ; r_{1}, r_{2}, \ldots, r_{m+1}\right)$ counts m-multichains with $r_{i}=\ell_{A}\left(g_{i}\right)-\ell_{A}\left(g_{i-1}\right)$, where $g_{0}=e$ and $g_{m+1}=g$.

Cheration in $[e, g]_{A}$

Hurwitz Orbits

Braid generator: σ_{i} exchanges $i^{\text {th }}$ and $(i+1)^{\text {st }}$ strand.
Braid group: group \mathfrak{B}_{n} generated by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ subject to braid relations.
Assume that $\ell_{A}(g)=k$.
A-reduced factorization: any product $g=a_{1} a_{2} \cdots a_{k}$. Let $\operatorname{Red}_{A}(g)$ denote the set of all A-reduced factorizations of g.

Hurwitz move: for $j<n$ define
$\sigma_{j} \cdot\left(a_{1} \cdots a_{j} a_{j+1} \cdots a_{k}\right)=a_{1} \cdots a_{j+1}\left(a_{j+1}^{-1} a_{j} a_{j+1}\right) \cdots a_{k}$. Hurwitz action: action of \mathfrak{B}_{k} on $\operatorname{Red}_{A}(g)$ defined by Hurwitz moves.

Let $g=\xi \zeta_{1} \zeta_{2} \cdots \zeta_{r} \in \mathfrak{A}_{N}$, where each ζ_{i} is an odd cycle, and ξ is a product of even cycles.
Proposition 3 (Mühle \& Nadeau, 2017) We have $[e, g]_{3}=[e, \zeta]_{3} \times \prod_{i=1}^{r}\left[e, \zeta_{i}\right]_{3}$.

Let $N=2 n+1$ and suppose that g is an N-cycle.
Theorem 5 (Mühle \& Nadeau, 2017) We have

$$
\mathscr{Z}_{g}(m)=\frac{m}{m N-n}\binom{m N-n}{n} .
$$

Theorem 6 (Mühle \& Nadeau, 2017) We have
$\mathscr{R}_{g}\left(m ; r_{1}, r_{2}, \ldots, r_{m+1}\right)=\frac{1}{N} \prod_{i=1}^{m+1} \frac{N}{N-r_{i}}\binom{N-r_{i}}{r_{i}}$
This extends to groups generated by k-cycles.

Theorem 9 (Mühle \& Nadeau, 2017) Let $g \in \mathfrak{A}_{N}$ have $2 k$ even cycles. The Hurwitz action on $\operatorname{Red}_{3}(g)$ has $\frac{(2 k k)!}{k!}$ orbits.

Sketch of proof

- prove Hurwitz transitivity for $k=0$
- for $k=1$, partition the generators into mixed and pure
- define a parity function on mixed generators
- show that parity is preserved under Hurwitz action
- for $k>1$, any matching of the even cycles of g is invariant under Hurwitz action

The Symmetric Group Generated by 2-Cycles

Let $G=\mathfrak{S}_{N}=\{g:[N] \rightarrow[N] \mid g$ bijective $\}$ and $A=\{(i j) \mid 1 \leq i<j \leq N\}$.
Write ℓ_{2} instead of ℓ_{A}, and Red_{2} instead of Red_{A}

Let $g \in \mathfrak{S}_{N}$ and let $\operatorname{cyc}(g)$ denote the number of cycles of g.

Proposition 2 (Folklore) We have

$$
\ell_{2}(g)=N-c y c(g) .
$$

Let $g=\zeta_{1} \zeta_{2} \cdots \zeta_{r} \in \mathfrak{S}_{N}$, where each ζ_{i} is a cycle.

Proposition 4 (Biane, 1997) We have

$$
[e, g]_{2}=\prod_{i=1}^{r}\left[e, \zeta_{i}\right]_{2} .
$$

Let $N=n+1$, and suppose that g is an N-cycle.
Theorem 7 (Kreweras, 1972) We have

$$
\mathscr{Z}_{g}(m)=\frac{1}{N}\binom{m N}{n} .
$$

Theorem 8 (Edelman, 1980) We have

$$
\mathscr{R}_{g}\left(m ; r_{1}, r_{2}, \ldots, r_{m+1}\right)=\frac{1}{N} \prod_{i=1}^{m+1}\binom{N}{r_{i}} .
$$

Noncrossing partition lattice!

Theorem 10 (Deligne, 1974) For $g \in \mathfrak{S}_{N}$ the Hur witz action on $\operatorname{Red}_{2}(g)$ is transitive.

Sketch of proof

- reduced factorizations of g correspond to maximal chains in $[e, g]_{2}$
- Proposition 4 implies that it suffices to consider $g=(12 \ldots N)$
-Hurwitz moves on (12)(2 3) $\cdots(N-1 N) \in$ $\operatorname{Red}_{2}(g)$ produce reduced factorizations of g starting with $(i j)$ for $1 \leq i<j<N$
- apply induction on $\ell_{2}(g)=N-1$

Example

Alternating Subgroups of Coxeter Groups

Let (W, S) be a finite Coxeter system with Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$.
Reflection: any element of $T=\left\{w^{-1} s w \mid w \in W, s \in S\right\}$.
Reflection length: $\ell_{T}(w)=\min \left\{k \mid w=t_{1} t_{2} \cdots t_{k}, t_{i} \in T\right\}$.
Alternating subgroup: $\mathfrak{A}(W)=\left\{w \in W \mid \ell_{T}(w) \equiv 0(\bmod 2)\right\}$.
The set $A_{W}=\left\{w^{-1} s t w \mid w \in W, m_{s t} \geq 3\right\}$ generates $\mathfrak{A}(W)$ as a monoid and is closed under W-conjugation. If $W=\mathfrak{S}_{N}$, then A_{W} consists of all 3-cycles.

Conjectures in Type B

Let (W, S) be of type B, i.e. W is the hyperoctahedral group of signed permutations. Let $|S|=N$ and $g=(12 \ldots N)(-1-2 \ldots-N)$.

Conjecture 11 (Mühle \& Nadeau, 2017) If $N=2 n$, then

$$
\mathscr{Z}_{g}(m)=\frac{m}{2 m-1}\binom{(2 m-1) n}{n} .
$$

