The Alternating Group Generated by 3-Cycles

Henri Mühle¹ and Philippe Nadeau²

¹Technische Universität Dresden, Institut für Algebra, 01069 Dresden, Germany. ²Université de Lyon, CNRS, ICJ UMR 5208, F-69622 Villeurbanne cedex, France.

Framework

Generated group: a pair (*G*, *A*) with *G* a group and $A \subseteq G$ a set generating *G* as a monoid. Assume in addition that *A* is closed under *G*-conjugation. Let $e \in G$ be the identity. Let $[n] = \{1, 2, ..., n\}$.

The Alternating Group Generated by 3-Cycles

Let $G = \mathfrak{A}_N = \{g \in \mathfrak{S}_N \mid \text{sgn}(g) = 1\}$, and $A = \{(i j k), (i k j) \mid 1 \le i < j < k \le N\}.$

Write ℓ_3 instead of ℓ_A , and Red₃ instead of Red_A.

The Symmetric Group Generated by 2-Cycles

Let $G = \mathfrak{S}_N = \{g : [N] \to [N] \mid g \text{ bijective}\}$ and $A = \{(i j) \mid 1 \le i < j \le N\}.$

Write ℓ_2 instead of ℓ_A , and Red₂ instead of Red_A.

Length Function and Prefix Order

Let $g \in \mathfrak{A}_N$ and let ocyc(g) denote the number of odd cycles of g.

Let $g \in \mathfrak{S}_N$ and let cyc(g) denote the number of cycles of g.

Chain enumeration in $[e,g]_A$.

This extends to groups generated by *k*-cycles.

Noncrossing partition lattice!

Hurwitz Orbits

Braid generator: σ_i exchanges i^{th} and $(i + 1)^{\text{st}}$ strand. **Braid group**: group \mathfrak{B}_n generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ subject to braid relations.

Assume that $\ell_A(g) = k$. *A*-reduced factorization: any product $g = a_1a_2 \cdots a_k$. Let $\operatorname{Red}_A(g)$ denote the set of all *A*-reduced factorizations of *g*.

Hurwitz move: for j < n define $\sigma_j \cdot (a_1 \cdots a_j a_{j+1} \cdots a_k) = a_1 \cdots a_{j+1} (a_{j+1}^{-1} a_j a_{j+1}) \cdots a_k.$ Hurwitz action: action of \mathfrak{B}_k on $\operatorname{Red}_A(g)$ defined by Hurwitz moves. **Theorem 9 (Mühle & Nadeau, 2017)** Let $g \in \mathfrak{A}_N$ have 2k even cycles. The Hurwitz action on $Red_3(g)$ has $\frac{(2k)!}{k!}$ orbits.

Sketch of proof

- prove Hurwitz transitivity for k = 0
- for *k* = 1, partition the generators into mixed and pure
- define a parity function on mixed generators
 show that parity is preserved under Hurwitz action
- for k > 1, any matching of the even cycles of g is invariant under Hurwitz action

Theorem 10 (Deligne, 1974) For $g \in \mathfrak{S}_N$ the Hurwitz action on $Red_2(g)$ is transitive.

Sketch of proof

- reduced factorizations of *g* correspond to maximal chains in [*e*, *g*]₂
- Proposition 4 implies that it suffices to consider $g = (1 \ 2 \ \dots \ N)$
- Hurwitz moves on $(1\ 2)(2\ 3) \cdots (N-1\ N) \in$ Red₂(*g*) produce reduced factorizations of *g* starting with (*i j*) for $1 \le i < j < N$

(1234)

(13)

(123) (12)(34) (14)(23) (134) (124)

• apply induction on $\ell_2(g) = N - 1$

Example

Alternating Subgroups of Coxeter Groups

Let (W, S) be a finite Coxeter system with Coxeter matrix $(m_{st})_{s,t\in S}$.

Reflection: any element of $T = \{w^{-1}sw \mid w \in W, s \in S\}$. **Reflection length**: $\ell_T(w) = \min\{k \mid w = t_1t_2 \cdots t_k, t_i \in T\}$. **Alternating subgroup**: $\mathfrak{A}(W) = \{w \in W \mid \ell_T(w) \equiv 0 \pmod{2}\}$.

The set $A_W = \{w^{-1}stw \mid w \in W, m_{st} \geq 3\}$ generates $\mathfrak{A}(W)$ as a monoid and is closed under *W*-conjugation. If $W = \mathfrak{S}_N$, then A_W consists of all 3-cycles.

Conjectures in Type *B*

Let (W, S) be of type *B*, i.e. *W* is the hyperoctahedral group of signed permutations. Let |S| = N and $g = (1 \ 2 \ \dots \ N)(-1 \ -2 \ \dots \ -N)$.

Conjecture 11 (Mühle & Nadeau, 2017) *If* N = 2n, *then*

$$f_g(m) = \frac{m}{2m-1} \binom{(2m-1)n}{n}$$