
THE ALTERNATING GROUP GENERATED BY 3-CYCLES

Henri Mühle1 and Philippe Nadeau2

1Technische Universität Dresden, Institut für Algebra, 01069 Dresden, Germany.
2Université de Lyon, CNRS, ICJ UMR 5208, F-69622 Villeurbanne cedex, France.

THE ALTERNATING GROUP GENERATED BY 3-CYCLES

Henri Mühle1 and Philippe Nadeau2

1Technische Universität Dresden, Institut für Algebra, 01069 Dresden, Germany.
2Université de Lyon, CNRS, ICJ UMR 5208, F-69622 Villeurbanne cedex, France.

Framework
Generated group: a pair (G, A) with G a group and A ⊆
G a set generating G as a monoid.
Assume in addition that A is closed under G-
conjugation. Let e ∈ G be the identity.

Let [n] = {1, 2, . . . , n}.

The Alternating Group
Generated by 3-Cycles

Let G = AN =
{

g ∈ SN | sgn(g) = 1
}

, and
A =

{
(i j k), (i k j) | 1 ≤ i < j < k ≤ N

}
.

Write `3 instead of `A, and Red3 instead of RedA.

The Symmetric Group
Generated by 2-Cycles

Let G = SN =
{

g : [N] → [N] | g bijective
}

and
A =

{
(i j) | 1 ≤ i < j ≤ N

}
.

Write `2 instead of `A, and Red2 instead of RedA.

Length Function and Prefix Order
Let g, h ∈ G.

A-Length: `A(g) = min{k | g = a1a2 · · · ak, ai ∈ A}.
A-Prefix order: g ≤A h if `A(h) = `A(g) + `A(g−1h).

Let g ∈ AN and let ocyc(g) denote the number of
odd cycles of g.

Proposition 1 (Mühle & Nadeau, 2017) We have

`3(g) =
N − ocyc(g)

2
.

Let g ∈ SN and let cyc(g) denote the number of
cycles of g.

Proposition 2 (Folklore) We have

`2(g) = N − cyc(g).

Interval Structure
For g ∈ G study the interval [e, g]A in (G,≤A).

Let g = ξζ1ζ2 · · · ζr ∈ AN, where each ζi is an odd
cycle, and ξ is a product of even cycles.

Proposition 3 (Mühle & Nadeau, 2017) We have

[e, g]3 = [e, ξ]3×
r

∏
i=1

[e, ζi]3.

Let g = ζ1ζ2 · · · ζr ∈ SN, where each ζi is a cycle.

Proposition 4 (Biane, 1997) We have

[e, g]2 =
r

∏
i=1

[e, ζi]2.

Enumeration
Fix g ∈ G.

m-multichain: m-tuple (g1, g2, . . . , gm) with g1 ≤A g2 ≤A

· · · ≤A gm ≤A g.
Zeta polynomial: Zg(m) counts m− 1-multichains.
Rank jump enumeration: Rg(m; r1, r2, . . . , rm+1) counts
m-multichains with ri = `A(gi)− `A(gi−1), where g0 = e
and gm+1 = g.

Let N = 2n + 1 and suppose that g is an N-cycle.

Theorem 5 (Mühle & Nadeau, 2017) We have

Zg(m) =
m

mN − n

(
mN − n

n

)
.

Theorem 6 (Mühle & Nadeau, 2017) We have

Rg(m; r1, r2, . . . , rm+1) =
1
N

m+1

∏
i=1

N
N − ri

(
N − ri

ri

)
.

Let N = n + 1, and suppose that g is an N-cycle.

Theorem 7 (Kreweras, 1972) We have

Zg(m) =
1
N

(
mN

n

)
.

Theorem 8 (Edelman, 1980) We have

Rg(m; r1, r2, . . . , rm+1) =
1
N

m+1

∏
i=1

(
N
ri

)
.

Hurwitz Orbits
Braid generator: σi exchanges ith and (i + 1)st strand.
Braid group: group Bn generated by σ1, σ2, . . . , σn−1 sub-
ject to braid relations.

Assume that `A(g) = k.
A-reduced factorization: any product g = a1a2 · · · ak.
Let RedA(g) denote the set of all A-reduced factoriza-
tions of g.

Hurwitz move: for j < n define
σj · (a1 · · · ajaj+1 · · · ak) = a1 · · · aj+1(a−1

j+1ajaj+1) · · · ak.
Hurwitz action: action of Bk on RedA(g) defined by Hur-
witz moves.

Theorem 9 (Mühle & Nadeau, 2017) Let g ∈ AN

have 2k even cycles. The Hurwitz action on Red3(g)
has (2k)!

k! orbits.

Sketch of proof

•prove Hurwitz transitivity for k = 0
• for k = 1, partition the generators into mixed

and pure
•define a parity function on mixed generators
• show that parity is preserved under Hurwitz

action
• for k > 1, any matching of the even cycles of g

is invariant under Hurwitz action

Theorem 10 (Deligne, 1974) For g ∈ SN the Hur-
witz action on Red2(g) is transitive.

Sketch of proof

• reduced factorizations of g correspond to max-
imal chains in [e, g]2
•Proposition 4 implies that it suffices to con-

sider g = (1 2 . . . N)

•Hurwitz moves on (1 2)(2 3) · · · (N−1 N) ∈
Red2(g) produce reduced factorizations of g
starting with (i j) for 1 ≤ i < j < N
• apply induction on `2(g) = N − 1

Example

(1)

(1 6 7) (2 3 6) (4 5 6) (1 4 7) (2 3 4) (2 5 6) (1 2 7) (3 4 7) (5 6 7) (1 2 5) (3 4 5) (3 6 7) (1 2 3) (1 4 5)

(1 6 7)(3 4 5) (1 2 3 6 7) (1 2 3)(4 5 6) (1 4 5 6 7) (1 6 7)(2 3 4) (2 3 4 5 6) (1 2 7)(4 5 6) (1 2 3 4 7) (2 3 4)(5 6 7) (1 2 5 6 7) (1 2 7)(3 4 5) (3 4 5 6 7) (1 2 3)(5 6 7) (1 2 3 4 5)

(1 2 3 4 5 6 7)

(1)

(2 3) (3 4) (1 3) (2 4) (1 2) (1 4)

(2 3 4) (1 2 3) (1 2)(3 4) (1 4)(2 3) (1 3 4) (1 2 4)

(1 2 3 4)

Alternating Subgroups of Coxeter Groups
Let (W, S) be a finite Coxeter system with Coxeter matrix (mst)s,t∈S.

Reflection: any element of T = {w−1sw | w ∈W, s ∈ S}.
Reflection length: `T(w) = min{k | w = t1t2 · · · tk, ti ∈ T}.
Alternating subgroup: A(W) =

{
w ∈W | `T(w) ≡ 0 (mod 2)

}
.

The set AW = {w−1stw | w ∈ W, mst ≥ 3} generates A(W) as a monoid and is
closed under W-conjugation. If W = SN, then AW consists of all 3-cycles.

Conjectures in Type B
Let (W, S) be of type B, i.e. W is the hyperoctahedral group of signed permuta-
tions. Let |S| = N and g = (1 2 . . . N)(−1 −2 . . . −N).

Conjecture 11 (Mühle & Nadeau, 2017) If N = 2n, then

Zg(m) =
m

2m− 1

(
(2m− 1)n

n

)
.

Also: Herzog & Reid, 1976

Chain enumeration in [e, g]A.
This extends to groups generated by k-cycles.

Noncrossing partition lattice!


