BALLOT-NONCROSSING PARTITIONS

Henri Mühle

Technische Universität Dresden, Institut für Algebra, Zellescher Weg 12–14, 01069 Dresden, Germany.

Parabolic Cataland

- generalize Catalan objects subject to a coloring given by an integer composition
- these objects live in parabolic quotients of the symmetric group

Dyck Paths

• an *n*-Dyck path is a lattice path from (0,0) to (n, n) that uses only unit north- and east-steps and never passes below the main diagonal • a **valley** of an *n*-Dyck path is a subpath *EN* and a **peak** is a subpath *NE*

Notation

• for a natural number n, let $[n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$ • let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_r)$ be a composition of *n* • let $s_i \stackrel{\text{def}}{=} \alpha_1 + \alpha_2 + \cdots + \alpha_i$ for $i \in [r]$; $s_0 \stackrel{\text{def}}{=} 0$ • an α -region is $\{s_{i-1} + 1, s_{i-1} + 2, ..., s_i\}$ for $i \in [r]$

231-Avoiding Permutations

• an α -permutation is a permutation w of [n] such

The Ballot Case

- in the case $\alpha = \alpha_{(n;t)} \stackrel{\text{def}}{=} (t, 1, 1, \dots, 1)$, where r entries n = t + r - 1, we recover ballot paths
- this case generalizes many well-known properties of Catalan objects
- for arbitrary compositions, not all of these generalizations hold

Noncrossing Partitions

• an α -Dyck path is an *n*-Dyck path that stays weakly above the path

 $\rightsquigarrow \mathcal{D}_{\alpha}$

 $\nu_{\alpha} \stackrel{\text{def}}{=} N^{\alpha_1} E^{\alpha_1} N^{\alpha_2} E^{\alpha_2} \dots N^{\alpha_r} E^{\alpha_r}$

Rotation Order

- a **rotation** of an α -Dyck path μ by a valley *EN* is the exchange of *E* with the subpath from *N* to the next coordinate on μ that has the same horizontal distance to v_{α} as the coordinate between *E* and *N*
- the **rotation order** on the set of α -Dyck paths is the reflexive and transitive closure of this relation

- that w(i) < w(i+1) for all $i \notin \{s_1, s_2, \dots, s_{r-1}\}$
- a **descent** of an α -permutation w is a pair (i, j) with i < j and w(i) = w(j) + 1
- an α -permutation w is $(\alpha, 231)$ -avoiding if there do not exist $1 \le i < j < k \le n$ in different α -regions such that w(k) < w(i) < w(j) and (i, k) is a descent $\rightsquigarrow \mathfrak{S}_{\alpha}(231)$
- **2 11 15 1 3 7 10 12 13 5 6 4 9 8 14**

Theorem (***** & N. Williams, 2015). For every integer composition α , the sets \mathcal{D}_{α} , $\mathfrak{S}_{\alpha}(231)$ and NC_{α} are in bijection.

Theorem (4, 2018). For $n \geq t > 0$, the common cardinality of the sets $\mathcal{D}_{\alpha_{(n,t)}}$, $\mathfrak{S}_{\alpha_{(n:t)}}(231) \text{ and } NC_{\alpha_{(n:t)}} \text{ is } \frac{t+1}{n+1}\binom{2n-t}{n-t}.$

Weak Order

- an α -partition is a set partition of [n] where no block intersects an α -region more than once
- a **bump** of an α -partition is a pair of consecutive elements in a block
- an α -partition is **noncrossing** if any two distinct bumps (a_1, b_1) and (a_2, b_2) satisfy the following:
- if $a_1 < a_2 < b_1 < b_2$, then either a_1 and a_2 or b_1 and a_2 belong to the same α -region
- -if $a_1 < a_2 < b_2 < b_1$, then a_1 and a_2 belong to different α -regions

 $\rightsquigarrow NC_{\alpha}$

 $\rightsquigarrow \operatorname{Ref}(\alpha)$

(Dual) Refinement Order

• an α -partition **P**₁ refines an α -partition **P**₂ if every block of \mathbf{P}_1 is contained in some block of \mathbf{P}_2

- an **inversion** of an α -permutation w is a pair (i, j)with i < j and w(i) > w(j)
- the weak order orders the set of $(\alpha, 231)$ -avoiding permutations by containment of inversion sets

• the (dual) refinement order orders the set of noncrossing α -partitions (dually) by refinement

Think: representation of distributive lattices by order ideals of posets.

Galois Graphs

• a finite lattice whose length equals both the number of join- and meet-irreducibles is **extremal** • extremal lattices can be represented by certain di-

rected graphs; their Galois graphs

Think: shard intersection order. The Core Label Order

Theorem (2018).

• in a finite, edge-labeled lattice, the set of labels between some element *x* and $x_{\downarrow} \stackrel{\text{def}}{=} \bigwedge y \text{ is the core label set of } x$

• the **core label order** orders the core label sets by inclusion

For $n \ge t > 0$, the core label order of $Tam(\alpha_{(n:t)})$ is isomorphic to $Ref(\alpha_{(n:t)})$.

Theorem (C. Ceballos, W. Fang, 4, 2018). For $n \ge t > 0$, the extremal lattices $Rot(\alpha_{(n:t)})$ and $Tam(\alpha_{(n:t)})$ admit isomorphic Galois graphs, and are therefore isomorphic. Recall Wenjie's talk.

The *H*-Triangle

- for $\mu \in \mathcal{D}_{\alpha_{(n:t)}}$ let $p(\mu)$ denote the number of peaks
- let $bo(\mu)$ be the number of common peaks of μ and $\nu_{\alpha_{(n+1)}}$, and ba (μ) be the number of peaks at horizontal distance 1 from $\nu_{\alpha_{(n't)}}$

• *H*-triangle: $H_{\alpha_{(n;t)}}(p,q) \stackrel{\text{def}}{=} \sum p^{p(\mu)-bo(\mu)}q^{ba(\mu)}$ $\mu \in \mathcal{D}_{\alpha_{(n;t)}}$

Conjecture (, 2018). For $n \ge t > 0$, we have $H_{\alpha_{(n;t)}}(p,q) = \left(1 + p(q-1)\right)^{n-t} M_{\alpha_{(n;t)}}\left(\frac{p(q-1)}{p(q-1)+1}, \frac{q}{q-1}\right).$ Conjectured for $\alpha = (1, ..., 1, a, 1, ..., 1)$. **Conjecture** (4, 2018). For $n \ge t > 0$, the function $F_{\alpha_{(n;t)}}(p,q) = p^{n-t}H_{\alpha_{(n;t)}}\left(\frac{p+1}{p}, \frac{q+1}{p+1}\right)$ is a polynomial with nonnegative integer coefficients.

The *M***-Triangle**

Holds for $\alpha = (a, 1, ..., 1, b)$.

• for $\mathbf{P} \in NC_{\alpha_{(n+1)}}$ let $\mathbf{b}(\mathbf{P})$ denote the number of bumps of **P**

• let μ denote the Möbius function of Ref($\alpha_{(n:t)}$)

• *M*-triangle:

 $M_{\alpha_{(n;t)}}(p,q) \stackrel{\text{def}}{=} \sum_{\mathbf{P}_1,\mathbf{P}_2 \in \mathbf{NC}_{\alpha_{(n;t)}}} \mu(\mathbf{P}_1,\mathbf{P}_2) p^{\mathbf{b}(\mathbf{P}_2)} q^{\mathbf{b}(\mathbf{P}_1)}$