Parabolic Cataland

- generalize Catalan objects subject to a coloring given by an integer composition
- these objects live in parabolic quotients of the symmetric group

Dyck Paths

- an n-Dyck path is a lattice path from $(0,0)$ to (n, n) that uses only unit north- and east-steps and never passes below the main diagonal
- a valley of an n-Dyck path is a subpath $E N$ and a peak is a subpath $N E$
- an α-Dyck path is an n-Dyck path that stays weakly above the path
$v_{\alpha} \xlongequal{\text { def }} N^{\alpha_{1}} E^{\alpha_{1}} N^{\alpha_{2}} E^{\alpha_{2}} \ldots N^{\alpha_{r}} E^{\alpha_{r}}$
$\rightsquigarrow \mathcal{D}_{\alpha}$

Rotation Order

- a rotation of an α-Dyck path μ by a valley $E N$ is the exchange of E with the subpath from N to the next coordinate on μ that has the same horizontal distance to v_{α} as the coordinate between E and N
- the rotation order on the set of α-Dyck paths is the reflexive and transitive closure of this relation
$\rightsquigarrow \operatorname{Rot}(\alpha)$

Notation

- for a natural number n, let $[n] \stackrel{\text { def }}{=}\{1,2, \ldots, n\}$
- let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ be a composition of n
- let $s_{i} \stackrel{\text { def }}{=} \alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}$ for $i \in[r] ; s_{0} \stackrel{\text { def }}{=} 0$
- an α-region is $\left\{s_{i-1}+1, s_{i-1}+2, \ldots, s_{i}\right\}$ for $i \in[r]$

231-Avoiding Permutations

- an α-permutation is a permutation w of $[n]$ such that $w(i)<w(i+1)$ for all $i \notin\left\{s_{1}, s_{2}, \ldots, s_{r-1}\right\}$
- a descent of an α-permutation w is a pair (i, j) with $i<j$ and $w(i)=w(j)+1$
- an α-permutation w is $(\alpha, 231)$-avoiding if there do not exist $1 \leq i<j<k \leq n$ in different α-regions such that $w(k)<w(i)<w(j)$ and (i, k) is a descent

$$
\rightsquigarrow \mathfrak{S}_{\alpha}(231)
$$

$\begin{array}{lllllllllllllll}2 & 11 & 15 & 1 & 3 & 7 & 10 & 12 & 13 & 5 & 6 & 4 & 9 & 8 & 14\end{array}$

Theorem (\& N. Williams, 2015).
For every integer composition α, the sets $\mathcal{D}_{\alpha}, \mathfrak{S}_{\alpha}(231)$ and NC_{α} are in bijection.

Theorem (\% 2018).

For $n \geq t>0$, the common cardinality of the sets $\mathcal{D}_{\alpha_{(n}}$ $\mathfrak{S}_{\alpha_{(n, t)}}(231)$ and $\mathrm{NC}_{\alpha_{(n, t)}}$ is $\frac{t+1}{n+1}\binom{2 n-t}{n-t}$.

Weak Order

- an inversion of an α-permutation w is a pair (i, j) with $i<j$ and $w(i)>w(j)$
- the weak order orders the set of $(\alpha, 231)$-avoiding permutations by containment of inversion sets
$\rightsquigarrow \operatorname{Tam}(\alpha)$

The Ballot Case

- in the case $\alpha=\alpha_{(n, t)} \stackrel{\text { def }}{=} \underbrace{(t, 1,1, \ldots, 1)}_{r \text { entries }}$, where $n=t+r-1$, we recover ballot paths
- this case generalizes many well-known properties of Catalan objects
- for arbitrary compositions, not all of these generalizations hold

Noncrossing Partitions

- an α-partition is a set partition of [n] where no block intersects an α-region more than once
- a bump of an α-partition is a pair of consecutive elements in a block
- an α-partition is noncrossing if any two distinct bumps (a_{1}, b_{1}) and (a_{2}, b_{2}) satisfy the following: -if $a_{1}<a_{2}<b_{1}<b_{2}$, then either a_{1} and a_{2} or b_{1} and a_{2} belong to the same α-region
-if $a_{1}<a_{2}<b_{2}<b_{1}$, then a_{1} and a_{2} belong to different α-regions

(Dual) Refinement Order

- an α-partition \mathbf{P}_{1} refines an α-partition \mathbf{P}_{2} if every block of \mathbf{P}_{1} is contained in some block of \mathbf{P}_{2}
- the (dual) refinement order orders the set of noncrossing α-partitions (dually) by refinement
$\rightsquigarrow \operatorname{Ref}(\alpha)$

Think: representation of distributive lat tices by order ideals of posets.
 Galois Graphs

- a finite lattice whose length equals both the number of join- and meet-irreducibles is extremal
- extremal lattices can be represented by certain directed graphs; their Galois graphs

Thinks shard interesection order The Core Label Order

- in a finite, edge-labeled lattice, the set of labels between some element x and $x_{\downarrow} \stackrel{\text { def }}{=} \bigwedge_{y<x} y$ is the core label set of x
- the core label order orders the core label sets by inclusion

Theorem (C. Ceballos, W. Fang, 2018).

For $n \geq t>0$, the extremal lattices $\operatorname{Rot}\left(\alpha_{(n ; t)}\right)$ and $\operatorname{Tam}\left(\alpha_{(n ; t)}\right)$ admit isomorphic Galois graphs, and are therefore isomorphic.

Recall Wenjie's talk.

Theorem (${ }^{\circ}$, 2018).
For $n \geq t>0$, the core label order of $\operatorname{Tam}\left(\alpha_{(n ; t)}\right)$ is isomorphic to $\operatorname{Ref}\left(\alpha_{(n ; t)}\right)$.

The H -Triangle

- for $\mu \in \mathcal{D}_{\alpha_{(n, t)}}$ let $\mathrm{p}(\mu)$ denote the number of peaks
- let bo (μ) be the number of common peaks of μ and $v_{\alpha_{(n, t)}}$, and ba (μ) be the number of peaks at horizontal distance 1 from $v_{\alpha_{(n, t)}}$
- H-triangle: $H_{\alpha_{(n, t)}}(p, q) \stackrel{\text { def }}{=} \sum_{\mu \in \mathcal{D}_{\alpha_{(n, t)}}} p^{\mathrm{p}(\mu)-\mathrm{bo}(\mu)} q^{\mathrm{ba}(\mu)}$

Conjecture (${ }^{*}$, 2018).
For $n \geq t>0$, we have
$H_{\alpha_{(n, t)}}(p, q)=(1+p(q-1))^{n-t} M_{\alpha_{(n, t)}}\left(\frac{p(q-1)}{p(q-1)+1}, \frac{q}{q-1}\right)$
Conjectured for $\alpha=(1, \ldots, 1, a, 1, \ldots, 1)$.

Conjecture (2018).

For $n \geq t>0$, the function $F_{\alpha_{(n, t)}}(p, q)=p^{n-t} H_{\alpha_{(n, t)}}\left(\frac{p+1}{p}, \frac{q+1}{p+1}\right)$ is a polynomial with nonnegative integer coefficients.

The M-Triangle

- for $\mathbf{P} \in \mathrm{NC}_{\alpha_{(n, t)}}$ let $\mathrm{b}(\mathbf{P})$ denote the number of bumps of \mathbf{P}
- let μ denote the Möbius function of $\operatorname{Ref}\left(\alpha_{(n ; t)}\right)$
- M-triangle
$M_{\alpha_{(x, t)}}(p, q) \stackrel{\text { def }}{=} \sum_{\mathbf{P}_{1}, \mathbf{P}_{2} \in \mathrm{NC}_{a_{(n, t)}}} \mu\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right) p^{\mathrm{b}\left(\mathbf{P}_{2}\right)} q^{\mathrm{b}\left(\mathbf{P}_{1}\right)}$

