The m-Cover Posets and the
 STRIP-DECOMPOSITION OF m-DYCK PATHS

COXETER-CATALAN COMBINATORICS

- Catalan object: a finite set associated with the symmetric group whose cardinality equals some Catalan number
- problem: given an integer $m \geq 1$, parametrize a Catalan object so that the resulting set has cardinality equal to the corresponding Fuß-Catalan number, and when $m=1$ the set coincides with the corresponding classical Catalan object - general problem: recall that the symmetric group is a Coxeter group of type A; generalize the above constructions to any finite Coxeter group

Motivation

- Tamari lattice: a classical Catalan object that can be realized as the set of Dyck paths equipped with the rotation order
- m-Tamari lattice: the set of m-Dyck paths equipped with the rotation order
-m-Tamari lattice associated with a Coxeter group W: open! we provide a new realization of the classical m-Tamari lattice in terms of m-tuples of Dyck paths; using the same construction (the m-cover posets), we provide an " m-Tamari like" lattice for the dihedral group \mathfrak{D}_{k}

The m-Cover Posets

Let $\mathcal{P}=(P, \leq)$ be a bounded poset, let $\hat{0}$ denote the least element, and let $m>0$.

- m-cover poset $\mathcal{P}^{\langle m\rangle}$: the subposet of the direct product \mathcal{P}^{m} with ground set

$$
P^{\langle m\rangle}=\{(\underbrace{\hat{0}, \ldots, \hat{0}}_{l_{1}}, \underbrace{p, \ldots, p}_{l_{2}}, \underbrace{q, \ldots, q}_{l_{3}}) \mid p \lessdot q, l_{1}+l_{2}+l_{3}=m\}
$$

Example: The pentagon lattice and its 2-cover poset

The m-Dyck Paths and the m-Tamari Lattices

-m-Dyck path of length $(m+1) n$: north-east path from $(0,0)$ to $(m n, n)$ that stays weakly above the line $x=m y$

- $\mathcal{D}_{n}^{(m)}$ denotes the set of all m-Dyck paths of length $(m+1) n$
$-\left|\mathcal{D}_{n}^{(m)}\right|=\operatorname{Cat}^{(m)}\left(\mathfrak{S}_{n}\right)=\frac{1}{m n+1}\left(\begin{array}{c}\binom{m+1) n}{n}\end{array}\right.$
- rotation order \leq_{R} : covers given by exchanging an east step with the subsequent subpath
-m-Tamari lattice: the poset $\mathcal{T}_{n}^{(m)}=\left(\mathcal{D}_{n}^{(m)}, \leq_{R}\right)$

THE STRIP-DECOMPOSITION

- strip-decomposition: the map $\delta: \mathcal{D}_{n}^{(m)} \rightarrow\left(\mathcal{D}_{n}\right)^{m}$ given by "cutting the path into strips and regrouping"

Theorem: A new Realization of the m-Tamari lattice
For $m, n>0$ we have $\mathcal{T}_{n}^{(m)} \cong \mathbf{D M}\left(\mathcal{T}_{n}^{\langle m\rangle}\right)$, where $\mathbf{D M}$ denotes the Dedekind-MacNeille completion.
Sketch of the proof. Combine the following.
$-\mathcal{P} \cong \mathbf{D M}(\mathcal{M}(\mathcal{P}) \cup \mathcal{J}(\mathcal{P}))$, where \mathcal{P} is a finite lattice [known]

- $\left(\mathcal{M}\left(\mathcal{T}_{n}^{(m)}\right), \leq_{R}\right) \cong\left(\mathcal{M}\left(\mathcal{T}_{n}^{\langle m\rangle}\right), \leq_{R}\right)$
- $\left(\mathcal{J}\left(\mathcal{T}_{n}^{(m)}\right), \leq_{R}\right) \cong\left(\mathcal{J}\left(\mathcal{T}_{n}^{\langle m\rangle}\right), \leq_{R}\right)$
- every $\mathfrak{p} \in \mathcal{D}_{n}^{\langle m\rangle}$ can be written as a join of elements in $\mathcal{J}\left(\mathcal{T}_{n}^{\langle m\rangle}\right)$

A Conjecture

For $m, n>0$ we conjecture $\mathcal{T}_{n}^{(m)} \cong \beta \circ \delta\left(\mathcal{T}_{n}^{(m)}\right)$, where
$\triangleright \beta=\beta_{m-1, m} \circ \cdots \circ \beta_{2,3} \circ \beta_{1, m} \circ \cdots \circ \beta_{1,2}$ and

- $\beta_{i, j}:\left(\mathcal{D}_{n}\right)^{m} \rightarrow\left(\mathcal{D}_{n}\right)^{m^{m}}$ is defined by replacing in $\left(\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{m}\right)$ the i-th and j-th component by $\mathfrak{q}_{i} \wedge_{R} \mathfrak{q}_{j}$ and $\mathfrak{q}_{i} \vee_{R} \mathfrak{q}_{j}$, respectively

Theorem: Tamari-like Lattices for Dihedral Groups

For $k>1$ let \mathcal{C}_{k} denote the bounded poset whose proper part is the cardinal sum of a $(k-1)$-chain and an atom.

Then for every $m>0$, the poset $\mathcal{C}_{k}^{\langle m\rangle}$ is a trim lattice, and its cardinality is $\operatorname{Cat}^{(m)}\left(\mathfrak{D}_{k}\right)=\binom{m+1}{2} k+m+1$.

Example: The Lattice $\operatorname{DM}\left(\mathcal{T}_{4}{ }^{(2)}\right) \cong \mathcal{T}_{4}^{(2)}$

