Tamari Lattices for Parabolic Quotients of the Symmetric Group

Henri Mühle and Nathan Williams
LIAFA (Université Paris Diderot) and LaCIM (UQAM)

Parabolic 231-Avoiding Permutations

Let \mathfrak{S}_{n} be the symmetric group on $[n]:=\{1,2, \ldots, n\}$, and let $S:=\left\{s_{i}\right\}_{i=1}^{n-1}$ be the set of simple reflections $s_{i}:=(i, i+1)$. The Cayley graph of \mathfrak{S}_{n} generated by S may be oriented to form the weak order, which is a lattice. Fix $J:=S \backslash\left\{s_{j_{1}}, s_{j_{2}}, \ldots, s_{j_{r}}\right\}$, and let $\mathrm{B}(J)$ be the set partition of $[n]$ (whose parts we call J-regions)
$\left\{\left\{1, \ldots, j_{1}\right\},\left\{j_{1}+1, \ldots, j_{2}\right\}, \ldots,\left\{j_{r-1}+1, \ldots, j_{r}\right\},\left\{j_{r}+1, \ldots, n\right\}\right\}$.
The parabolic quotient \mathfrak{S}_{n}^{J} is the set of $w \in \mathfrak{S}_{n}$ whose one-line notation has the form

$$
w=w_{1}<\cdots<w_{j_{1}}\left|w_{j_{1}+1}<\cdots<w_{j_{2}}\right| \cdots \mid w_{j_{r}+1}<\cdots<w_{n} .
$$

Definition 1 A permutation $w \in \mathfrak{S}_{n}^{J}$ is J-231-avoiding if there exist no three indices $i<j<k$, all of which lie in different J-regions, such that $w_{k}<w_{i}<w_{j}$ and $w_{i}=w_{k}+1$. Let $\mathfrak{S}_{n}^{J}(231)$ denote the set of J-231-avoiding permutations of \mathfrak{S}_{n}^{J}.

Theorem 2 For $J \subseteq S$, the restriction of the weak order to $\mathfrak{S}_{n}^{J}(231)$ forms a lattice. Furthermore, \mathcal{T}_{n}^{J} is a lattice quotient of the weak order on \mathfrak{S}_{n}^{J}.
When $J=\emptyset$, we recover the classical Tamari lattice on 231-avoiding permutations.

Parabolic Noncrossing Partitions

Let $\mathbf{P}=\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}$ be a set partition of $[n]$. A pair (a, b) is a bump of \mathbf{P} if $a, b \in P_{i}$ for some $i \in[s]$ and there is no $c \in P_{i}$ with $a<c<b$.

Definition 3 A set partition \mathbf{P} of $[n]$ is J-noncrossing if it satisfies:
(NC1) If i and j lie in the same J-region, then they are not contained in the same part of P.
(NC2) If two distinct bumps $\left(i_{1}, i_{2}\right)$ and $\left(j_{1}, j_{2}\right)$ of \mathbf{P} satisfy $i_{1}<j_{1}<i_{2}<j_{2}$, then either i_{1} and j_{1} lie in the same J-region or i_{2} and j_{1} lie in the same J-region.
(NC3) If two distinct bumps $\left(i_{1}, i_{2}\right)$ and $\left(j_{1}, j_{2}\right)$ of \mathbf{P} satisfy $i_{1}<j_{1}<j_{2}<i_{2}$, then i_{1} and j_{1} lie in different J-regions.
Let NC_{n}^{J} denote the set of all J-noncrossing set partitions of $[n]$.
When $J=\emptyset$, we recover the classical noncrossing set partitions.
Example 4 For $J=\left\{s_{1}, s_{2}, s_{3}, s_{5}, s_{8}\right\},\{\{1\},\{2,9\},\{3,10\},\{4\},\{5\},\{6,8\},\{7\}\} \in \mathrm{NC}_{10}^{J}$.

Parabolic Nonnesting Partitions

Definition 5 A set partition \mathbf{P} of $[n]$ is J-nonnesting if it satisfies:
(NN1) If i and j lie in the same J-region, then they are not in the same part of \mathbf{P} (NN2) If $\left(i_{1}, i_{2}\right)$ and $\left(j_{1}, j_{2}\right)$ are two distinct bumps of \mathbf{P}, then it is not the case that $i_{1}<j_{1}<j_{2}<i_{2}$.
Let NN_{n}^{J} denote the set of all J-nonnesting partitions of $[n]$.
When $J=\emptyset$, we recover the classical nonnesting set partitions.
Example 6 For $J=\left\{s_{1}, s_{2}, s_{3}, s_{5}, s_{8}\right\},\{\{1\},\{2\},\{3,5\},\{4,8\},\{6,10\},\{7\},\{8\},\{9\}\} \in \mathrm{NN}_{10}^{J}$.

Parabolic Catalan Objects are Equinumerous

Although we no longer have a product formula for $\left|\mathfrak{S}_{n}^{J}(231)\right|$, our parabolic generalizations remain in bijection, generalizing the situation when $J=\emptyset$.

Theorem $7 \quad$ For $n>0$ and $J \subseteq S$, we have $\left|\mathfrak{S}_{n}^{J}(231)\right|=\left|\mathrm{NC}_{n}^{J}\right|=\left|\mathrm{NN}_{n}^{J}\right|$

Fiom © $\mathrm{Cl}^{4(231)}$ to NCH

A permutation $w \in \mathfrak{S}_{n}^{J}(231)$ corresponds to the J-noncrossing partition $\mathbf{P} \in \mathrm{NC}_{n}^{J}$ whose bumps are determined by the descents of w.

Example $8 \quad$ For $n=10$ and $J=\left\{s_{1}, s_{2}, s_{3}, s_{5}, s_{8}\right\}$,

$$
17910|25| 3|46| 8 \quad \in \mathfrak{S}_{10}^{J} \quad \text { gives }
$$

$$
\in \mathrm{NC}_{10}^{J}
$$

Example: $\mathfrak{S}_{4}, J=\left\{s_{2}\right\}$

Outlook

We can generalize the definition of J-231-sortable elements of \mathfrak{S}_{n}^{J} to parabolic quotients of any finite Coxeter group and to any Coxeter element.
The definition of parabolic noncrossing and nonnesting partitions-as well as the c-cluster complex - can also be generalized, but - in contrast to the classical case when $J=\emptyset$ - the four sets are not always equinumerous.

