TAMARI LATTICES FOR PARABOLIC QUOTIENTS OF THE Symmetric Group

Henri Mühle and Nathan Williams LIAFA (Université Paris Diderot) and LaCIM (UQAM)

Parabolic 231-Avoiding Permutations

Let \mathfrak{S}_n be the symmetric group on $[n] := \{1, 2, \ldots, n\}$, and let $S := \{s_i\}_{i=1}^{n-1}$ be the set of simple reflections $s_i := (i, i+1)$. The Cayley graph of \mathfrak{S}_n generated by S may be oriented to form the *weak order*, which is a lattice. Fix $J := S \setminus \{s_{j_1}, s_{j_2}, \ldots, s_{j_r}\}$, and let B(J) be the set partition of [n] (whose parts we call *J*-regions)

 $\{\{1,\ldots,j_1\},\{j_1+1,\ldots,j_2\},\ldots,\{j_{r-1}+1,\ldots,j_r\},\{j_r+1,\ldots,n\}\}.$

The *parabolic quotient* \mathfrak{S}_n^J is the set of $w \in \mathfrak{S}_n$ whose one-line notation has the form

Parabolic Catalan Objects are Equinumerous

Although we no longer have a product formula for $|\mathfrak{S}_n^J(231)|$, our parabolic generalizations remain in bijection, generalizing the situation when $J = \emptyset$.

For n > 0 and $J \subseteq S$, we have $|\mathfrak{S}_n^J(231)| = |\mathrm{NC}_n^J| = |\mathrm{NN}_n^J|$. Theorem 7

From $\mathfrak{S}_n^J(231)$ to NC_n^J

 $w = w_1 < \cdots < w_{j_1} \mid w_{j_1+1} < \cdots < w_{j_2} \mid \cdots \mid w_{j_r+1} < \cdots < w_n.$

A permutation $w \in \mathfrak{S}_n^J$ is J-231-avoiding if there exist no three indices Definition 1 i < j < k, all of which lie in different J-regions, such that $w_k < w_i < w_i$ and $w_i = w_k + 1$. Let $\mathfrak{S}_n^J(231)$ denote the set of J-231-avoiding permutations of \mathfrak{S}_n^J .

For $J \subseteq S$, the restriction of the weak order to $\mathfrak{S}_n^J(231)$ forms a Theorem 2 lattice. Furthermore, \mathcal{T}_n^J is a lattice quotient of the weak order on \mathfrak{S}_n^J . When $J = \emptyset$, we recover the classical Tamari lattice on 231-avoiding permutations.

Parabolic Noncrossing Partitions

Let $\mathbf{P} = \{P_1, P_2, \dots, P_s\}$ be a set partition of [n]. A pair (a, b) is a *bump* of \mathbf{P} if $a, b \in P_i$ for some $i \in [s]$ and there is no $c \in P_i$ with a < c < b.

A set partition **P** of [n] is *J*-noncrossing if it satisfies: Definition 3 (NC1) If i and j lie in the same J-region, then they are not contained in the same part of \mathbf{P} .

(NC2) If two distinct bumps (i_1, i_2) and (j_1, j_2) of **P** satisfy $i_1 < j_1 < i_2 < j_2$, then either i_1 and j_1 lie in the same J-region or i_2 and j_1 lie in the same J-region.

(NC3) If two distinct bumps (i_1, i_2) and (j_1, j_2) of **P** satisfy $i_1 < j_1 < j_2 < i_2$, then i_1 and j_1 lie in different *J*-regions.

A permutation $w \in \mathfrak{S}_n^J(231)$ corresponds to the *J*-noncrossing partition $\mathbf{P} \in \mathrm{NC}_n^J$ whose bumps are determined by the descents of w.

Example 8 For
$$n = 10$$
 and $J = \{s_1, s_2, s_3, s_5, s_8\},$
 $17910 | 25|3|46|8 \in \mathfrak{S}_{10}^J$ gives
 $i = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10}$

From NC_n^J to NN_n^J

A J-noncrossing partition \mathbf{P} corresponds to the J-nonnesting partition \mathbf{P}' , in which the minimal elements outside \mathbf{P}' are determined by the bumps of \mathbf{P} .

Example 9 For n = 10 and $J = \{s_1, s_2, s_3, s_5, s_8\}$, we compute

Let NC_n^J denote the set of all J-noncrossing set partitions of [n].

When $J = \emptyset$, we recover the classical noncrossing set partitions.

Example 4 For $J = \{s_1, s_2, s_3, s_5, s_8\}, \{\{1\}, \{2, 9\}, \{3, 10\}, \{4\}, \{5\}, \{6, 8\}, \{7\}\} \in \mathbb{NC}_{10}^J$.

Parabolic Nonnesting Partitions

A set partition **P** of [n] is *J*-nonnesting if it satisfies: Definition 5 (NN1) If i and j lie in the same J-region, then they are not in the same part of \mathbf{P} . (NN2) If (i_1, i_2) and (j_1, j_2) are two distinct bumps of **P**, then it is not the case that $i_1 < j_1 < j_2 < i_2$.

Let NN_n^J denote the set of all J-nonnesting partitions of [n].

When $J = \emptyset$, we recover the classical nonnesting set partitions.

Example:
$$\mathfrak{S}_4, J = \{s_2\}$$

Example 6 For $J = \{s_1, s_2, s_3, s_5, s_8\}$, $\{\{1\}, \{2\}, \{3, 5\}, \{4, 8\}, \{6, 10\}, \{7\}, \{8\}, \{9\}\}\} \in NN_{10}^J$.

Outlook

We can generalize the definition of J-231-sortable elements of \mathfrak{S}_n^J to parabolic quotients of any finite Coxeter group and to any Coxeter element. The definition of parabolic noncrossing and nonnesting partitions—as well as the c-cluster complex—can also be generalized, but—in contrast to the classical case when $J = \emptyset$ —the four sets are not always equinumerous.