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Day’s Doubling Construction
Let P = (P,≤) be a poset and let 2 be the chain of length 2
whose elements are 0 and 1.
For I ⊆ P, define P≤I = {x ∈ P | x ≤ y for some y ∈ I}.
The doubling of P by I is the subposet P [I] of P × 2 given by
the ground set

(
P≤I × {0}

)
]
((

(P \ P≤I) ∪ I
)
× {1}

)
.

Congruence-Uniform Lattices
A lattice is congruence-uniform if it can be obtained from the
singleton lattice by a sequence of interval doublings.
Let us label the edges in the poset diagram according to the step
in which they where created; and call this labeling λ.

The Alternate Order
Let P = (P,≤) be a congruence-
uniform lattice. For x ∈ P, define
x↓ =

∧
ylx

y, and

Ψ(x) =
{

λ(u, v) | x↓ ≤ u l v ≤ x
}

.

The alternate order of P is the
poset Alt(P) = (P,v) determined
by the order relation x v y if and
only if Ψ(x) ⊆ Ψ(y).

Problem 1 (N. Reading, 2016)
For which congruence-uniform lat-
tices is their alternate order again a
lattice?
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The Motivation

The Poset of Regions
Let A be a simplicial hyperplane arrangement, and fix
a base region B. The poset of regions P(A, B) is the
reflexive and transitive closure of the adjacency graph
of the regions of A oriented away from B.

B B

→

Shards of Hyperplanes
Let X be an intersection of hyperplanes of A of codi-
mension 2. The regions containing X form a polygo-
nal interval of P(A, B) with a greatest element Q. The
bounding hyperplanes of Q that contain X “cut” all the
other hyperplanes containing X. All these cuts split the
hyperplanes of A into shards.

Q

X → →

Congruence-Uniform Lattices of Regions
If A and B are such that P(A, B) is a congruence-
uniform lattice, then we can identify the edge labels of
P(A, B) with the shards ofA. The sets Ψ(·) correspond
to intersections of shards.

Theorem 2 (N. Reading, 2011)
If P(A, B) is a congruence-uniform lattice, then
Alt
(
P(A, B)

)
is a lattice, too.
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{1} {2} {3} {4} {5} {6}

{1, 2, 3, 4, 5, 6}

→

Meet-Semidistributive
Lattices

A lattice P = (P,≤) is meet-semi-
distributive if for all x, y, z ∈ P the follow-
ing implication holds: if x∧ y = x∧ z, then
x ∧ y = x ∧ (y ∨ z) for all x, y ∈ P.

Every congruence-uniform lattice is meet-
semidistributive.

The Möbius Function
The Möbius function of a poset P is the
function µP defined recursively by:

µP(x, y) =


1, if x = y,
− ∑

x≤z<y
µP(x, z), if x < y,

0, otherwise.

The Crosscut Theorem
Let P = (P,≤) be a lattice with least element 0̂ and greatest element 1̂.
An antichain C ⊆ P \ {0̂, 1̂} is a crosscut if every maximal chain of P
intersects C.
A crosscut C is spanning if

∨
C = 1̂ and

∧
C = 0̂.

Theorem 3 (G.-C. Rota, 1964)
Let P = (P,≤) be a lattice, and let C ⊆ P be a crosscut. We have
µP(0̂, 1̂) = ∑

X⊆C spanning
(−1)|X|.

Spherical Meet-Semidistributive
Lattices

Proposition 4
Every meet-semidistributive lattice P satisfies
µP(0̂, 1̂) ∈ {−1, 0, 1}.

A meet-semidistributive lattice P is spherical if
µP(0̂, 1̂) 6= 0.

A Necessary Condition

Theorem 5 ( , 2017)
Let P be a congruence-uniform lattice. If Alt(P) is a
lattice, then P is spherical.

Sketch of proof: use meet-semidistributivity of P and
Theorem 3 to show that Alt(P) has a greatest element
if and only if P is spherical.

Another Example
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A Particular Doubling
Let P = (P,≤) be a lattice. An element j ∈ P \ {0̂} is join-irreducible if
j = x ∨ y implies j ∈ {x, y}.

Proposition 6
Let P = (P,≤) be a congruence-uniform lattice, and let x, y ∈ P such that
there exists a join-irreducible element j ∈ P with j ∈ [x↓, x] ∩ [y↓, y].
If Ψ(j) ⊆ Ψ(x) ∩Ψ(y), then Alt

(
P
[
{j}
])

is not a lattice.

Theorem 7 ( , 2017)
LetP be a spherical congruence-uniform lattice with at least three atoms. There
exists a spherical congruence-uniform lattice P ′ with |P ′| = |P|+ 1 such that
Alt(P ′) is not a lattice.

The Intersection Property
A congruence-uniform lattice P = (P,≤) has the intersection property if for every x, y ∈ P
there exists some z ∈ P such that Ψ(x) ∩Ψ(y) = Ψ(z).

Proposition 8
Let P be a congruence-uniform lattice. If P has the intersection property, then Alt(P) is a meet-
semilattice.

Problem 9
Which congruence-uniform lattices have the intersection property?

Problem 10
Find a spherical congruence-uniform lattice P without the intersection property for which Alt(P)
is a lattice.

A central hyperplane arrangement is

simplicial if every region is a simplicial

cone.

Congruence-uniform lattices of re-

gions have the intersection property.


