Day's Doubling Construction

Let $\mathcal{P}=(P, \leq)$ be a poset and let 2 be the chain of length 2 whose elements are 0 and 1 .
For $I \subseteq P$, define $P_{\leq I}=\{x \in P \mid x \leq y$ for some $y \in I\}$.
The doubling of \mathcal{P} by I is the subposet $\mathcal{P}[I]$ of $\mathcal{P} \times 2$ given by the ground set $\left(P_{\leq I} \times\{0\}\right) \uplus\left(\left(\left(P \backslash P_{\leq I}\right) \cup I\right) \times\{1\}\right)$.

Congruence-Uniform Lattices

A lattice is congruence-uniform if it can be obtained from the singleton lattice by a sequence of interval doublings.
Let us label the edges in the poset diagram according to the step in which they where created; and call this labeling λ.

The Alternate Order

Let $\mathcal{P}=(P, \leq)$ be a congruenceuniform lattice. For $x \in P$, define $x_{\downarrow}=\bigwedge_{y<x} y$, and
$\Psi(x)=\left\{\lambda(u, v) \mid x_{\downarrow} \leq u \lessdot v \leq x\right\}$. The alternate order of \mathcal{P} is the poset $\operatorname{Alt}(\mathcal{P})=(P, \sqsubseteq)$ determined by the order relation $x \sqsubseteq y$ if and only if $\Psi(x) \subseteq \Psi(y)$.

Problem 1 (N. Reading, 2016)
For which congruence-uniform lattices is their alternate order again a lattice?

The Motivation

The Poset of Regions

Let \mathcal{A} be a simplicial hyperplane arrangement, and fix a base region B. The poset of regions $\mathcal{P}(\mathcal{A}, B)$ is the reflexive and transitive closure of the adjacency graph of the regions of \mathcal{A} oriented away from B.

Shards of Hyperplanes
Let X be an intersection of hyperplanes of \mathcal{A} of codimension 2. The regions containing X form a polygonal interval of $\mathcal{P}(\mathcal{A}, B)$ with a greatest element Q. The bounding hyperplanes of Q that contain X "cut" all the other hyperplanes containing X. All these cuts split the hyperplanes of \mathcal{A} into shards.

Congruence-Uniform Lattices of Regions

If \mathcal{A} and B are such that $\mathcal{P}(\mathcal{A}, B)$ is a congruenceuniform lattice, then we can identify the edge labels of $\mathcal{P}(\mathcal{A}, B)$ with the shards of \mathcal{A}. The sets $\Psi(\cdot)$ correspond to intersections of shards.

Theorem 2 (N. Reading, 2011)
If $\mathcal{P}(\mathcal{A}, B)$ is a congruence-uniform lattice, then $\operatorname{Alt}(\mathcal{P}(\mathcal{A}, B))$ is a lattice, too.

The Möbius Function

The Möbius function of a poset \mathcal{P} is the function $\mu_{\mathcal{P}}$ defined recursively by:
$\mu_{\mathcal{P}}(x, y)= \begin{cases}1, & \text { if } x=y \\ -\sum_{x \leq z<y} \mu_{\mathcal{P}}(x, z), & \text { if } x<y \\ 0, & \text { otherwise }\end{cases}$

The Crosscut Theorem

Let $\mathcal{P}=(P, \leq)$ be a lattice with least element $\hat{0}$ and greatest element $\hat{1}$. An antichain $C \subseteq P \backslash\{\hat{0}, \hat{1}\}$ is a crosscut if every maximal chain of \mathcal{P} intersects C.
A crosscut C is spanning if $\bigvee C=\hat{1}$ and $\wedge C=\hat{0}$.

Theorem 3 (G.-C. Rota, 1964)

Let $\mathcal{P}=(P, \leq)$ be a lattice, and let $C \subseteq P$ be a crosscut. We have $\mu_{\mathcal{P}}(\hat{0}, \hat{1})=\sum_{X \subseteq C \text { spanning }}(-1)^{|X|}$. semidistributive

A Necessary Condition

Theorem $5($ 2017
Let \mathcal{P} be a congruence-uniform lattice. If $\operatorname{Alt}(\mathcal{P})$ is a lattice, then \mathcal{P} is spherical.

Sketch of proof: use meet-semidistributivity of \mathcal{P} and Theorem 3 to show that $\operatorname{Alt}(\mathcal{P})$ has a greatest element if and only if \mathcal{P} is spherical.

A Particular Doubling

Let $\mathcal{P}=(P, \leq)$ be a lattice. An element $j \in P \backslash\{\hat{0}\}$ is join-irreducible if $j=x \vee y$ implies $j \in\{x, y\}$.

Proposition 6

Let $\mathcal{P}=(P, \leq)$ be a congruence-uniform lattice, and let $x, y \in P$ such that there exists a join-irreducible element $j \in P$ with $j \in\left[x_{\downarrow}, x\right] \cap\left[y_{\downarrow}, y\right]$. If $\Psi(j) \subseteq \Psi(x) \cap \Psi(y)$, then $\operatorname{Alt}(\mathcal{P}[\{j\}])$ is not a lattice.

Theorem 7 (

Let \mathcal{P} be a spherical congruence-uniform lattice with at least three atoms. There exists a spherical congruence-uniform lattice \mathcal{P}^{\prime} with $\left|\mathcal{P}^{\prime}\right|=|\mathcal{P}|+1$ such that $\operatorname{Alt}\left(\mathcal{P}^{\prime}\right)$ is not a lattice.

The Intersection Property

Congruence-uniform lattices of re gions have the intersection property

A congruence-uniform lattice $\mathcal{P}=(P, \leq)$ has the intersection property if for every $x, y \in P$ there exists some $z \in P$ such that $\Psi(x) \cap \Psi(y)=\Psi(z)$.

Proposition 8

Let \mathcal{P} be a congruence-uniform lattice. If \mathcal{P} has the intersection property, then $\operatorname{Alt}(\mathcal{P})$ is a meetsemilattice.

Problem 9

Which congruence-uniform lattices have the intersection property?

Problem 10

Find a spherical congruence-uniform lattice \mathcal{P} without the intersection property for which $\operatorname{Alt}(\mathcal{P})$ is a lattice.

