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The Strong Sperner Property and Symmetric Chain
Decompositions

Let P = (P,≤) be a graded poset of rank n. For k ≥ 1, a k-family is X ⊆ P that
does not contain a (k + 1)-chain. P is k-Sperner if the size of a k-family does not
exceed the sum of the k largest rank numbers, and it is strongly Sperner if it is
k-Sperner for all k ≤ n.
A symmetric chain decomposition of P is a partition of P with saturated chains
that are symmetric about the middle rank(s). The existence of a symmetric chain
decomposition implies the strong Sperner property.

The Groups G(d, d, n)
For d, n ≥ 1, the group G(d, d, n) consists of monomial (n × n)-matrices whose
non-zero entries are dth roots of unity, and whose product of non-zero entries is 1.
We can view these groups as subgroups of the symmetric group Sdn, where the
underlying set consists of n integers each appearing in d different colors.
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Facts
The group G(1, 1, n) is isomorphic to the symmetric group Sn.
The group G(d, d, n) is isomorphic to an index-d subgroup of the wreath product
µd oSn, where µd is the cyclic group of dth roots of unity.

The Motivation
For d = 1, define Rk = {x ∈ NCG(1,1,n) | x(1) = k}; let Rk =

(
Rk,≤T

)
. Let 2 denote

the 2-chain, and let ] denote disjoint union.

Theorem 1 (R. Simion & D. Ullmann, 1991) For n ≥ 1, we have R1 ] R2
∼= 2 ×

NCG(1,1,n−1), andRk
∼= NCG(1,1,k−2)×NCG(1,1,n−k+1) whenever 3 ≤ k ≤ n.

Consequently, NCG(1,1,n) admits a symmetric chain decomposition.

Example: d = n = 3
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Noncrossing Partition Lattices Associated with
Well-Generated Complex Reflection Groups

The groups
{

G(d, d, n)
}

d,n≥1 are irreducible well-generated complex reflec-
tion groups. There is one other infinite family of such groups, denoted by{

G(d, 1, n)
}

d,n≥2, and 26 exceptional ones. We can define a noncrossing partition
lattice NCW, for W being one of these groups, analogously as before.

Theorem 2 (V. Reiner, 1997) For d, n ≥ 2, the lattice NCG(d,1,n) admits a symmetric
chain decomposition.

In principle, one could try to prove the existence of a symmetric chain decompo-
sition for the noncrossing partition lattices associated with the irreducible excep-
tional well-generated complex reflection groups by computer. This is, however,
quite a hard problem. Nevertheless, we managed to prove the strong Sperner
property using a decomposition argument.

Some Examples

A non-Sperner poset. A Sperner poset that is not 2-
Sperner.

A strongly Sperner poset with
a symmetric chain decomposi-
tion.

The Posets NCG(d,d,n)

G(d, d, n) is generated by T =
{((

a(0) b(s)
))
| 1 ≤ a < b ≤ n, 0 ≤ s < d

}
; let `T be

the corresponding length function. For x, y ∈ G(d, d, n) define x ≤T y if and only
if `T(y) = `T(x) + `T(x−1y).

The Case d = 1
Let c = (1 2 . . . n), and define NCG(1,1,n) =

{
x ∈ G(1, 1, n) | x ≤T c

}
; let
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)
.

The Case d > 1
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, and define NCG(d,d,n) =
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The Main Result
For d > 1, define R(s)

k =
{

x ∈ G(d, d, n) | x(1(0)) = k(s)
}

; let R(s)
k =

(
R(s)

k ,≤T
)
. Let

∅ denote the empty poset.

Lemma 3 ( , 2015) For d, n ≥ 2, we have the following isomorphisms:
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1 ]R
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•R(s)
n
∼= NCG(1,1,n−1), for 0 ≤ s < d;
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k
∼= NCG(d,d,n−k+1)×NCG(1,1,k−2), for 3 ≤ k < n;

•R(d−1)
k

∼= NCG(d,d,n−k)×NCG(1,1,k−1), for 3 ≤ k < n;

•R(s)
k = ∅ otherwise.

We therefore need to fix the parts R(1)
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Lemma 4 ( , 2015) For d, n ≥ 2, we have D1
∼= D2

∼= 2×NCG(1,1,n−2), and D ∼=⊎n−1
k=3 NCG(1,1,k−2)×NCG(1,1,n−k).

Theorem 5 ( , 2015) For d, n ≥ 2, the poset NCG(d,d,n) admits a symmetric chain
decomposition.

The Decomposition Argument
Let P = (P,≤) be a graded poset of rank n with rank numbers r0, r1, . . . , rn.
Say that s is the index of the largest rank number, and let R be the set of
poset elements of rank s. Let P[1] = P \ R, and more generally, define P[k] =
(· · · ((P[1])[1]) · · · )[1]︸ ︷︷ ︸

k times

. Set P [k] =
(

P[k],≤
)
.

Proposition 6 ( , 2015) A graded poset P of rank n is strongly Sperner if and only
if P [k] is 1-Sperner for each k ∈ {0, 1, . . . , n}.

In order to check whether a poset is 1-Sperner one basically needs to compute the
size of the largest antichain, and there are fast algorithms for that.

Theorem 7 ( , 2015) The lattice NCW is strongly Sperner for each well-generated
complex reflection group W.

Disconnected, asymmetric!


