PARABOLIC TAMARI LATTICES IN LINEAR TYPE B (ARXIV:2112.13400) Wenjie Fang¹, Henri Mühle², and Jean-Christophe Novelli¹ ¹LIGM, Université Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

²Institut für Algebra, Technische Universität Dresden, 01062 Dresden, Germany

Goal

Provide a **combinatorial model** of the construction of **parabolic** Tamari lattices in type B.

Starting point: Universal algebraic construction of parabolic Tamari posets for all types (Mühle and Williams 2019), universal construction of Tamari (Cambrian) lattices for all types, defined on *c*-aligned elements, combinatorial constructions using pattern-avoidance for classical Coxeter groups (Reading 2007).

Equivalent combinatorial construction

Type-B (α , 231)-pattern in $\pi \in \mathfrak{H}_{\alpha}$: indices i < j < k in $\pm [n]$ with j > 0 and i, j, k in different regions such that

- $\pi(i) = \pi(k) + 1$ or $\pi(i) = -\pi(k) = 1$; (cover inversion)
- $\pi(j) > \pi(i)$ when α is split or $j > \alpha_1$; (231)
- $\pi(j) < \pi(k)$ when α is join and $j \le \alpha_1$. (312)

Split case:

4 $\overline{7}$ $\overline{3}$ **1** $\overline{6}$ $\overline{2}$ 5 $\overline{5}$ 2 **6** $\overline{1}$ 3 7 $\overline{4}$ Pattern

Type-B permutations and Coxeter group

Type-B permutations: permutations π of $\pm [n] \stackrel{\text{def}}{=} \{-n, \ldots, -1, 1, \ldots, n\}$ that are sign-symmetric, *i.e.*, $\pi(-i) = -\pi(i)$. We also denote -i by \overline{i} . **One-line notation:** $\pi = \overline{9} \,\overline{7} \,\overline{8} \,5 \,\overline{6} \,1 \,\overline{3} \,\overline{4} \,2 \mid \overline{2} \,4 \,3 \,\overline{1} \,6 \,\overline{5} \,8 \,7 \,9.$ They form the Coxeter group of type B, also called the hyperoctahedral group \mathfrak{H}_n .

Weak order on type-B Coxeter groups

Inversion of $\pi \in \mathfrak{H}_n$: indices $i, j \in \pm [n]$ with i < j and $\pi(i) > \pi(j)$ By sign-symmetry, if *i*, *j* is an inversion of $\pi \in \mathfrak{H}_n$, then -j, -i too. Thus we denote it by $((i \ j))$ with 0 < i < j or 0 < j < -i, and [i] when j = -i**Inversion set** of π : set of inversions of π , denoted by $Inv(\pi)$ Example:

 $\pi = \overline{4} \ \overline{3} \ \overline{5} \ 1 \ 2 \ | \ \overline{2} \ \overline{1} \ 5 \ 3 \ 4 \Rightarrow \mathsf{Inv}(\pi) = \{ [1], [2], ((-2 \ 1)), ((3 \ 4)), ((3 \ 5)) \}$ Weak order (left), type B: $\pi \leq_{weak} \sigma \Leftrightarrow Inv(\pi) \subseteq Inv(\sigma)$

Example:

 $\overline{4} \,\overline{5} \,\overline{3} \,\overline{1} \,2 \mid \overline{2} \,1 \,3 \,5 \,4 \leq_{\mathsf{weak}} \overline{4} \,\overline{3} \,\overline{5} \,1 \,2 \mid \overline{2} \,\overline{1} \,5 \,3 \,4$

$4 \ \overline{5} \ \overline{1} \ 6 \ \overline{2} \ 3 \ 7 \ \overline{7} \ \overline{3} \ 2 \ \overline{6} \ 1 \ \overline{5} \ \overline{4}$ Pattern

Join case:

6 4 8 7 **5 3 2 1 1 2 3 5 7 8 4 6** Not pattern

Pattern

 $\mathfrak{H}_{\alpha}(231)$: the set of type-B ($\alpha, 231$)-avoiding permutations **Type-B parabolic Tamari lattice** Tam_B(α): restriction of the weak order to $\mathfrak{H}_{\alpha}(231)$

Main result 1: $Tam_B(\alpha)$ is a lattice

Theorem. For every type-B composition α , Tam_B(α) is a lattice. Moreover, it is a quotient lattice of the weak order on the parabolic quotient \mathfrak{H}_{α} . Congruence classes defined by downward projection Π_{\downarrow} : **1.** For each $(\alpha, 231)$ -pattern i, j, k, exchange $\pi(i)$ and $\pi(k)$. 2. Repeat Step 1 until no such pattern exists.

 Π_{\perp} gives the smallest element in the class. We also define an upward projection Π_{\uparrow} using $(\alpha, 312)$ -patterns, giving the largest element.

These projections define the same poset on respectively the $(\alpha, 231)$ - and the $(\alpha, 312)$ avoiding permutations.

Examples of type-B parabolic Tamari lattices

Generators and parabolic subgroups

- Generators: $S = \{s_0, s_1, \dots, s_{n-1}\}$
- -For $i \ge 1$, s_i exchanges i and i + 1 (thus -i and -i 1 as well);
- $-s_0$ exchanges 1 and -1.
- Type-B composition: $\alpha = (\alpha_1, \ldots, \alpha_k)$, with possibly $\alpha_1 = 0$
- α is split when $\alpha_1 = 0$, join otherwise.
- Parabolic subgroup of \mathfrak{H}_n : generated by s_i except when $i = \alpha_1 + \cdots + \alpha_j$ for some j
- Parabolic quotient \mathfrak{H}_{α} : formed by permutations that are increasing in each region.

• Weak order on \mathfrak{H}_{α} : restriction of \leq_{weak} on \mathfrak{H}_{α}

Algebraic construction of type-B Tamari lattice

Type B: take the Coxeter element $c = s_{n-1}s_{n-2}\cdots s_1s_0$

 π is *c*-aligned $\Leftrightarrow \pi$ satisfies the forcing relations: every $t \in Cov(\pi)$ implies several other $t' \in Inv(\pi)$, determined by a linear order of inversions given by the c-sorting

Main result 2: lattice properties of $Tam_B(\alpha)$

Theorem. For every type-B composition α , Tam_B(α) is congruence uniform and trim.

- Congruence uniform: quotient lattice of \mathfrak{H}_n
- Semi-distributive: from congruence uniformity

word of the longest element in \mathfrak{H}_n , and also by positive linear combinations of the root related to t.

Type B, parabolic: replace the longest element in \mathfrak{H}_n by that in \mathfrak{H}_{α} , denoted by $\omega_{\mathfrak{o};\alpha}$. The c-sorting word $u = u_1 \dots u_k$ can be read from left to right, bottom to top, in a skew tableau filled with the same s_i on each diagonal:

 $\alpha = (1,2) \Rightarrow u = s_1 s_0 \mid s_2 s_1 s_0 \mid s_2 s_1 \quad \alpha = (0,1,2) \Rightarrow u = s_1 s_0 \mid s_2 s_1 s_0 \mid s_2 s_1 s_0$ All inversions of $\pi \in \mathfrak{H}_{\alpha}$ take the form $t_i = u_k \dots u_{k-i+1} \dots u_k$, and the order is given by $t_1 \prec \cdots \prec t_k$. Putting each inversion t_i in the cell of u_{k-i+1} helps computing the forcing relations:

• Extremal: explicit counting of join-irreducibles and the length of the lattice

$$\omega_{\mathbf{o};(0,2,1,4,2)} = \begin{bmatrix} 8 & 9 & 4 & 5 & 6 & 7 & 3 & 1 & 2 & \overline{2} & \overline{1} & \overline{3} & \overline{7} & \overline{6} & \overline{5} & \overline{4} & \overline{9} & \overline{8} \\ \omega_{\mathbf{o};(2,1,4,2)} = \begin{bmatrix} 8 & 9 & 4 & 5 & 6 & 7 & 3 & \overline{2} & \overline{1} & 1 & 2 & \overline{3} & \overline{7} & \overline{6} & \overline{5} & \overline{4} & \overline{9} & \overline{8} \end{bmatrix}$$

$$|\operatorname{Inv}(\omega_{\mathbf{o};\alpha})| = n^2 - \sum_i \binom{\alpha_i}{2} - \binom{\alpha_1 + 1}{2}.$$

• Trim: from extremality and semi-distributivity

References

H. MÜHLE and N. WILLIAMS, Tamari Lattices for Parabolic Quotients of the Symmetric Group, Electron. J. Combin. 26 (2019).

N. READING, Clusters, Coxeter-Sortable Elements and Noncrossing Partitions, Trans. Amer. Math. Soc. 359 (2007).