Parabolic Tamari Lattices in Linear Type B (arXiv:2112.13400)

Wenjie Fang ${ }^{1}$, Henri Mühle ${ }^{2}$, and Jean-Christophe Novelli ${ }^{1}$
${ }^{1}$ LIGM, Université Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France
${ }^{2}$ Institut für Algebra, Technische Universität Dresden, 01062 Dresden, Germany

Goal

Provide a combinatorial model of the construction of parabolic Tamari lattices in type B.
Starting point: Universal algebraic construction of parabolic Tamari posets for all types (Mühle and Williams 2019), universal construction of Tamari (Cambrian) lattices for all types, defined on c-aligned elements, combinatorial constructions using pattern-avoidance for classical Coxeter groups (Reading 2007).

Type-B permutations and Coxeter group

Type-B permutations: permutations π of $\pm[n] \stackrel{\text { def }}{=}\{-n, \ldots,-1,1, \ldots, n\}$ that are sign-symmetric, i.e., $\pi(-i)=-\pi(i)$. We also denote $-i$ by \bar{i}.
One-line notation: $\pi=\overline{9} \overline{7} \overline{8} 5 \overline{6} 1 \overline{3} \overline{4} 2 \mid \overline{2} 43 \overline{1} 6 \overline{5} 879$.
They form the Coxeter group of type B, also called the hyperoctahedral group \mathfrak{H}_{n}.

Weak order on type-B Coxeter groups

Inversion of $\pi \in \mathfrak{H}_{n}$: indices $i, j \in \pm[n]$ with $i<j$ and $\pi(i)>\pi(j)$
By sign-symmetry, if i, j is an inversion of $\pi \in \mathfrak{H}_{n}$, then $-j,-i$ too.
Thus we denote it by ($i j)$) with $0<i<j$ or $0<j<-i$, and $\llbracket i \rrbracket$ when $j=-i$
Inversion set of π : set of inversions of π, denoted by $\operatorname{lnv}(\pi)$
Example:

$$
\pi=\overline{4} \overline{3} \overline{5} 12 \mid \overline{2} \overline{1} 534 \Rightarrow \operatorname{lnv}(\pi)=\{\llbracket 1], \llbracket 2],((-21)),((34)),((35))\}
$$

Weak order (left), type B: $\pi \leq_{\text {weak }} \sigma \Leftrightarrow \operatorname{lnv}(\pi) \subseteq \operatorname{lnv}(\sigma)$
Example:
$\overline{4} \overline{5} \overline{3} \overline{1} 2\left|\overline{2} 1354 \leq_{\text {weak }} \overline{4} \overline{3} \overline{5} 12\right| \overline{2} \overline{1} 534$

Generators and parabolic subgroups

- Generators: $S=\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}$
-For $i \geq 1, s_{i}$ exchanges i and $i+1$ (thus $-i$ and $-i-1$ as well);
- s_{0} exchanges 1 and -1 .
- Type-B composition: $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, with possibly $\alpha_{1}=0$
- α is split when $\alpha_{1}=0$, join otherwise.
- Parabolic subgroup of \mathfrak{H}_{n} : generated by s_{i} except when $i=\alpha_{1}+\cdots+\alpha_{j}$ for some j
- Parabolic quotient \mathfrak{H}_{α} : formed by permutations that are increasing in each region.

- Weak order on $\mathfrak{H}_{\alpha}:$ restriction of $\leq_{\text {weak }}$ on \mathfrak{H}_{α}

Algebraic construction of type-B Tamari lattice

Type B: take the Coxeter element $c=s_{n-1} s_{n-2} \cdots s_{1} s_{0}$
π is c-aligned $\Leftrightarrow \pi$ satisfies the forcing relations: every $t \in \operatorname{Cov}(\pi)$ implies several other $t^{\prime} \in \operatorname{Inv}(\pi)$, determined by a linear order of inversions given by the c-sorting word of the longest element in \mathfrak{H}_{n}, and also by positive linear combinations of the root related to t.
Type B, parabolic: replace the longest element in \mathfrak{H}_{n} by that in \mathfrak{H}_{α}, denoted by $\omega_{0 ; \alpha}$. The c-sorting word $u=u_{1} \ldots u_{k}$ can be read from left to right, bottom to top, in a skew tableau filled with the same s_{i} on each diagonal:

$$
\alpha=(1,2) \Rightarrow u=s_{1} s_{0}\left|s_{2} s_{1} s_{0}\right| s_{2} s_{1} \quad \alpha=(0,1,2) \Rightarrow u=s_{1} s_{0}\left|s_{2} s_{1} s_{0}\right| s_{2} s_{1} s_{0}
$$ All inversions of $\pi \in \mathfrak{H}_{\alpha}$ take the form $t_{i}=u_{k} \ldots u_{k-i+1} \ldots u_{k}$, and the order is given by $t_{1} \prec \cdots \prec t_{k}$. Putting each inversion t_{i} in the cell of u_{k-i+1} helps computing the forcing relations:

$((-31))((-21))$
$((12))((-32)) \quad[2]$
(13) [3]

Equivalent combinatorial construction

Type-B ($\alpha, 231$)-pattern in $\pi \in \mathfrak{H}_{\alpha}$: indices $i<j<k$ in $\pm[n]$ with $j>0$ and i, j, k in different regions such that

- $\pi(i)=\pi(k)+1$ or $\pi(i)=-\pi(k)=1 ; \quad$ (cover inversion)
- $\pi(j)>\pi(i)$ when α is split or $j>\alpha_{1}$; (231)
- $\pi(j)<\pi(k)$ when α is join and $j \leq \alpha_{1}$. (312)

Split case:

$\mathfrak{H}_{\alpha}(231)$: the set of type-B ($\alpha, 231$)-avoiding permutations
Type-B parabolic Tamari lattice $\operatorname{Tam}_{B}(\alpha)$: restriction of the weak order to $\mathfrak{H}_{\alpha}(231)$

Main result 1: $\operatorname{Tam}_{B}(\alpha)$ is a lattice

Theorem. For every type-B composition $\alpha, \operatorname{Tam}_{B}(\alpha)$ is a lattice. Moreover, it is a quotient lattice of the weak order on the parabolic quotient \mathfrak{H}_{α}.
Congruence classes defined by downward projection Π_{\downarrow} :
1 . For each ($\alpha, 231$)-pattern i, j, k, exchange $\pi(i)$ and $\pi(k)$.
2. Repeat Step 1 until no such pattern exists.
Π_{\downarrow} gives the smallest element in the class. We also define an upward projection Π_{\uparrow} using ($\alpha, 312$)-patterns, giving the largest element.
These projections define the same poset on respectively the ($\alpha, 231$)- and the ($\alpha, 312$)avoiding permutations.

Examples of type-B parabolic Tamari lattices

Main result 2: lattice properties of $\operatorname{Tam}_{B}(\alpha)$

Theorem. For every type-B composition $\alpha, \operatorname{Tam}_{B}(\alpha)$ is congruence uniform and trim.

- Congruence uniform: quotient lattice of \mathfrak{H}_{n}
- Semi-distributive: from congruence uniformity
- Extremal: explicit counting of join-irreducibles and the length of the lattice

$$
\begin{aligned}
& \omega_{0 ;(0,21,4,2)}=\begin{array}{llllllllllllllll}
8 & 9 & 4 & 5 & 6 & 7 & 3 & 1 & 2 & \overline{2} & \overline{1} & \overline{3} & \overline{7} & \overline{6} & \overline{5} & \overline{4} \\
\hline
\end{array} \overline{8} \\
& \omega_{0 ;(2,1,4,2)}=\begin{array}{lllllllllll}
8 & 9 & 4 & 5 & 6 & 7 & 3 & \overline{2} & \overline{1} & 1 & 2 \\
\hline
\end{array} \overline{7} \overline{6} \quad \overline{5} \quad \overline{4} \overline{9} \overline{8} \\
& \left|\operatorname{lnv}\left(\omega_{0 ; \alpha}\right)\right|=n^{2}-\sum_{i}\binom{\alpha_{i}}{2}-\binom{\alpha_{1}+1}{2} .
\end{aligned}
$$

- Trim: from extremality and semi-distributivity

References

H. Mühle and N. Williams, Tamari Lattices for Parabolic Quotients of the Symmetric Group, Electron. J. Combin. 26 (2019).
N. Reading, Clusters, Coxeter-Sortable Elements and Noncrossing Partitions, Trans. Amer. Math. Soc. 359 (2007).

