On the Topology of the Cambrian SEMILATTICES

Myrto Kallipoliti and Henri Mühle

Fakultät für Mathematik, Universität Wien, 1090 Vienna, Austria

Cambrian SEmilattices

For an arbitrary Coxeter group W and an arbitrary Coxeter element $\gamma \in W$, Reading and Speyer defined the γ-Cambrian semilattice \mathcal{C}_{γ} as a sublattice of the weak order semilattice. Cambrian semilattices constitute generalizations of the Tamari lattice \mathcal{T}_{n}, to which they reduce when W is the symmetric group \mathfrak{S}_{n} and γ is the long cycle $\gamma=(12 \cdots n)$.

What is known - The Finite Case

If \boldsymbol{W} is a finite Coxeter group, and $\gamma \in W$ is a Coxeter element, then \mathcal{C}_{γ} is a lattice. Considering its topological properties it is known that:
\mathcal{C}_{γ} is Cohen-Macaulay (in fact it is EL-shellable), and
$>$ every open interval of \mathcal{C}_{γ} is either contractible or spherical.

Question

What can be said about the topology of \mathcal{C}_{γ} in general? More precisely, can the previous results be generalized to infinite Coxeter groups W?

Results

We give an affirmative answer to the above question!
Let W be a (possibly infinite) Coxeter group and let $\gamma \in W$ be a Coxeter element.
Theorem 1
Every closed interval in \mathcal{C}_{γ} is EL-shellable.
Theorem 2
Every finite open interval in \mathcal{C}_{γ} is either contractible or spherical.

Definitions

Let W be a Coxeter group of rank n with simple generators $s_{1}, s_{2}, \ldots, s_{n}$, and let $\gamma=s_{1} s_{2} \cdots s_{n} \in W$ be a Coxeter element of W. Let $\gamma^{\infty}=s_{1} s_{2} \cdots s_{n}\left|s_{1} s_{2} \cdots s_{n}\right| \cdots$.
Every $w \in W$ can be written as a subword of γ^{∞}, in the form $w=s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1, n}}\left|s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2, n}}\right| \cdots \mid s_{1}^{\delta_{k, 1}} s_{2}^{\delta_{k, 2}} \cdots s_{n}^{\delta_{k, n}}$,
where $\delta_{i, j} \in\{0,1\}$ and $k \geq 0$.
$>i$-th block of w : the set $b_{i}(w)=\left\{s_{j} \mid \delta_{i, j}=1\right\}$
$>\gamma$-sorting word of w : the lexicographically first subword of
γ^{∞} among all reduced words for w
$>\gamma$-sortable element: some $w \in W$ such that the γ-sorting word of w satisfies $b_{1}(w) \supseteq b_{2}(w) \supseteq \cdots \supseteq b_{k}(w)$ $>\gamma$-Cambrian semilattice \mathcal{C}_{γ} : the sub-semilattice of the weak-order semilattice consisting of all γ-sortable elements

Example - γ-Sorting Words

Let $W=\mathfrak{S}_{4}$, generated by $s_{i}=(i i+1)$ for $i \in\{1,2,3\}$, and let $\gamma=s_{1} s_{2} s_{3}$. The following are reduced words of the same element $w \in W$:

$$
\begin{aligned}
& \mathbf{w}_{\mathbf{1}}=\mathbf{s}_{1} \mathbf{s}_{2} \mathbf{s}_{3}\left|\mathbf{s}_{1} \mathbf{s}_{2}, \quad w_{2}=s_{1} s_{2}\right| s_{1} s_{3}\left|s_{2}, w_{3}=s_{2}\right| s_{1} s_{2} s_{3} \mid s_{2} \\
& w_{4}=s_{2}\left|s_{1} s_{3}\right| s_{2} s_{3}, \quad w_{5}=s_{2} s_{3} \mid s_{1} s_{2} s_{3}
\end{aligned}
$$

The γ-sorting word of w is w_{1}, and we have $b_{1}\left(w_{1}\right)=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $b_{2}\left(w_{1}\right)=\left\{s_{1}, s_{2}\right\}$, with $b_{1}\left(w_{1}\right) \supseteq b_{2}\left(w_{1}\right)$.

Example - γ-Cambrian Semilattices

The Key Lemma

Lemma

Let $u, v \in \mathcal{C}_{\gamma}$ with $u \leq_{\gamma} v$. If $s_{1} \not \Sigma_{\gamma} u$ and $s_{1} \leq_{\gamma} v$, then the join $s_{1} \vee_{\gamma} u$ covers u in \mathcal{C}_{γ}.

Sketch of Proof - Theorem 1

Define the set of positions of the γ-sorting word of w as

$$
\alpha_{\gamma}(w)=\left\{(i-1) \cdot n+j \mid \delta_{i, j}=1\right\} \subseteq \mathbb{N}
$$

where the $\delta_{i, j}$'s are the exponents from (1). Note that $\alpha_{\gamma}(w)$ depends on a reduced word for γ !
Denote by $\mathcal{E}\left(\mathcal{C}_{\gamma}\right)$ the set of covering relations of \mathcal{C}_{γ}, and define an edge-labeling of \mathcal{C}_{γ} by

$$
\lambda_{\gamma}: \mathcal{E}\left(\mathcal{C}_{\gamma}\right) \rightarrow \mathbb{N}, \quad(u, v) \mapsto \min \left\{i \mid i \in \alpha_{\gamma}(v) \backslash \alpha_{\gamma}(u)\right\}
$$

Using induction on rank and length and the key lemma, we show that for every closed interval of \mathcal{C}_{γ} there exists a unique rising maximal chain with respect to λ_{γ} which is lexicographically first among all maximal chains in this interval. Thus, λ_{γ} is an EL-labeling of \mathcal{C}_{γ}.

Example - The Labeling

Let $W=\mathfrak{S}_{4}$, and $\gamma=s_{1} s_{2} s_{3}$. Consider the following:

$$
u=s_{3} \quad=s_{1}^{0} s_{2}^{0} s_{3}^{1} \quad \rightsquigarrow \alpha_{\gamma}(u)=\{3\}, \quad \text { and }
$$

$$
v=s_{2} s_{3}\left|s_{2}=s_{1}^{0} s_{2}^{1} s_{3}^{1}\right| s_{1}^{0} s_{2}^{1} s_{3}^{0} \rightsquigarrow \alpha_{\gamma}(v)=\{2,3,5\} .
$$

Thus, we have $\lambda_{\gamma}(u, v)=2$.

Sketch of Proof - Theorem 2

A classical result on EL-shellable posets states that the dimension of the k-th homology group of the corresponding truncated order complex is given by the number of falling maximal chains of length $k+2$ (with respect to the EL-labeling).
Using induction on rank and length and the key lemma, we show that there exists at most one falling maximal chain in every closed interval of \mathcal{C}_{γ}.

