ON THE TOPOLOGY OF THE CAMBRIAN SEMILATTICES

Myrto Kallipoliti and Henri Mühle Fakultät für Mathematik, Universität Wien, 1090 Vienna, Austria

CAMBRIAN SEMILATTICES

For an arbitrary Coxeter group W and an arbitrary Coxeter element $\gamma \in W$, Reading and Speyer defined the γ -Cambrian semilattice C_{γ} as a sublattice of the weak order semilattice. Cambrian semilattices constitute generalizations of the Tamari lattice \mathcal{T}_n , to which they reduce when W is the symmetric group \mathfrak{S}_n and γ is the long cycle $\gamma = (1 \ 2 \ \cdots \ n)$.

What is known – The Finite Case

QUESTION

What can be said about the topology of C_{γ} in general? More precisely, can the previous results be generalized to infinite Coxeter groups W?

Results

We give an affirmative answer to the above question! Let W be a (possibly infinite) Coxeter group and let $\gamma \in W$ be a Coxeter element.

If W is a finite Coxeter group, and $\gamma \in W$ is a Coxeter element, then C_{γ} is a lattice. Considering its topological properties it is known that:

\$\mathcal{C}_{\gamma}\$ is Cohen-Macaulay (in fact it is EL-shellable), and
 every open interval of \$\mathcal{C}_{\gamma}\$ is either contractible or spherical.

Theorem 1

Every closed interval in C_{γ} is EL-shellable.

Theorem 2

Every finite open interval in C_{γ} is either contractible or spherical.

DEFINITIONS

Let W be a Coxeter group of rank n with simple generators s_1, s_2, \ldots, s_n , and let $\gamma = s_1 s_2 \cdots s_n \in W$ be a Coxeter element of W. Let $\gamma^{\infty} = s_1 s_2 \cdots s_n |s_1 s_2 \cdots s_n| \cdots$. Every $w \in W$ can be written as a subword of γ^{∞} , in the form $w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{k,1}} s_2^{\delta_{k,2}} \cdots s_n^{\delta_{k,n}}$, (1) where $\delta_{i,j} \in \{0, 1\}$ and $k \ge 0$.

i-th block of *w*: the set b_i(w) = {s_j | δ_{i,j} = 1}
γ-sorting word of *w*: the lexicographically first subword of γ[∞] among all reduced words for *w*γ-sortable element: some w ∈ W such that the γ-sorting word of w satisfies b₁(w) ⊇ b₂(w) ⊇ ··· ⊇ b_k(w)
γ-Cambrian semilattice C_γ: the sub-semilattice of the weak-order semilattice consisting of all γ-sortable elements

The Key Lemma

Lemma

Let $u, v \in C_{\gamma}$ with $u \leq_{\gamma} v$. If $s_1 \not\leq_{\gamma} u$ and $s_1 \leq_{\gamma} v$, then the join $s_1 \vee_{\gamma} u$ covers u in C_{γ} .

Sketch of Proof – Theorem 1

Define the set of positions of the γ -sorting word of w as $\alpha_{\gamma}(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N},$ where the $\delta_{i,j}$'s are the exponents from (1). Note that $\alpha_{\gamma}(w)$

Example – γ -Sorting Words

Let $W = \mathfrak{S}_4$, generated by $s_i = (i \ i+1)$ for $i \in \{1, 2, 3\}$, and let $\gamma = s_1 s_2 s_3$. The following are reduced words of the same element $w \in W$:

 $w_1 = s_1 s_2 s_3 |s_1 s_2, w_2 = s_1 s_2 |s_1 s_3| s_2, w_3 = s_2 |s_1 s_2 s_3| s_2,$ $w_4 = s_2 |s_1 s_3| s_2 s_3, w_5 = s_2 s_3 |s_1 s_2 s_3.$

The γ -sorting word of w is w_1 , and we have $b_1(w_1) = \{s_1, s_2, s_3\}$ and $b_2(w_1) = \{s_1, s_2\}$, with $b_1(w_1) \supseteq b_2(w_1)$.

|EXAMPLE – γ -CAMBRIAN SEMILATTICES

 $s_1s_2s_3|s_1s_2|s_1$

 $s_1 s_2 s_3 | s_1 s_2 s_3 | s_1 s_2 s_3 | s_1 s_2 s_3 | s_2 s_3$

depends on a reduced word for γ !

Denote by $\mathcal{E}(\mathcal{C}_{\gamma})$ the set of covering relations of \mathcal{C}_{γ} , and define an edge-labeling of \mathcal{C}_{γ} by

 $\lambda_{\gamma}: \mathcal{E}(\mathcal{C}_{\gamma}) \to \mathbb{N}, \quad (u, v) \mapsto \min\{i \mid i \in \alpha_{\gamma}(v) \smallsetminus \alpha_{\gamma}(u)\}.$

Using induction on rank and length and the key lemma, we show that for every closed interval of C_{γ} there exists a unique rising maximal chain with respect to λ_{γ} which is lexicographically first among all maximal chains in this interval. Thus, λ_{γ} is an EL-labeling of C_{γ} .

Example – The Labeling

Let $W = \mathfrak{S}_4$, and $\gamma = s_1 s_2 s_3$. Consider the following: $u = s_3 = s_1^0 s_2^0 s_3^1 \longrightarrow \alpha_{\gamma}(u) = \{3\}, \text{ and}$ $v = s_2 s_3 | s_2 = s_1^0 s_2^1 s_3^1 | s_1^0 s_2^1 s_3^0 \longrightarrow \alpha_{\gamma}(v) = \{2, 3, 5\}.$ Thus, we have $\lambda_{\gamma}(u, v) = 2.$

Sketch of Proof – Theorem 2

A classical result on EL-shellable posets states that the dimension of the *k*-th homology group of the corresponding truncated order complex is given by the number of falling maximal chains of length k + 2 (with respect to the EL-labeling).

Using induction on rank and length and the key lemma, we show that there exists at most one falling maximal chain in every closed interval of C_{γ} .