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e P = (P, <) finite poset; X C P; 2 = ({0,1}, <)

° ngdzef{p € P|p < xforsomex € X}
@ doubling of P by X: subposet of P x 2 induced by
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e P = (P, <) finite poset; X C P; 2 = ({0,1}, <)
@ order convex: for all x,y,z € P withx <y <z, then
x,z € Ximpliesy € X

Theorem (A. Day; 1970)

If L = (L, <) is a finite lattice and X C L is order convex, then
L[X] is a lattice, too.
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o L = (L, <) finite lattice; x € L

def
@ nucleus: x| = Ay
yeLy<x

@ core: interval [x|, x| in £

o core labels: ¥(x) & {A(w,v) | x) <u<ov<x}

¥(x) = {3,4,5}
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@ core label order:

CLO(L) & ({‘P(x) |x € L},g)
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o L = (L, <) finite lattice
@ core label order:
CLO(L) & ({‘P(x) |x € L},g)

@ CLO(L) is not necessarily a meet-semilattice

A {1,2,3,4}
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o L = (L, <) finite lattice
@ core label order:
CLO(L) = ({¥(x) | xeL},C)

@ CLO(L) is not necessarily a meet-semilattice

Question (N. Reading; 2016)

For which congruence-uniform lattices £ is CLO(L) a lattice,
too?
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o L = (L, <) finite lattice; 0,1 least/ greatest element

@ 1 Mobius function

@ spherical: u(£) € {-1,1}

Theorem (T. McConville; 2015)
If L is congruence uniform, then u(L) € {—1,0,1}.




o L = (L, <) finite lattice; 0,1 least/ greatest element

@ 1 Mobius function

@ spherical: u(£) € {-1,1}

Theorem (¢; 2019)

Let L be congruence uniform. If CLO(L) is a lattice, then L is
spherical.
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o L = (L, <) finite lattice

@ intersection property: for all x,y € L exists z € L such
that ¥(x) N¥(y) = ¥(z)

Corollary (#; 2019)

Let L be congruence uniform. Then, CLO(L) is a lattice if and
only if L is spherical and has the intersection property.




o L = (L, <) finite lattice

@ intersection property: for all x,y € L exists z € L such
that ¥(x) N¥(y) = ¥(z)

Question (; 2019)

Which congruence-uniform lattices have the intersection
property?
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@ M finite set; p(M) power set of M
o Boolean lattice: Bool(M) (p(M), <)

Theorem (¢; 2019)

Let L be congruence uniform. Then, £ = Bool(M) for some
finite set M if and only if £ = CLO(L).
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@ join representation: X C L such thatx = \/ X
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@ canonical join representation: minimum with respect
to refinement ~ T'(x)

Theorem (A. Day; 1979)

Every element of a congruence-uniform lattice admits a canonical
join representation.
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o L = (L, <) congruence-uniform lattice; x € L
@ join representation: X C L such thatx = \/ X
@ Xrefines Y: Lex C Lcy

@ canonical join representation:

T(x) = {AMy,x) |y <x}
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closed under taking subsets.
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o L = (L, <) finite lattice
@ canonical join complex: simplicial complex whose
faces are canonical join representations ~~ Can(x)

o face poset: set of faces ordered by inclusion
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o L = (L, <) finite lattice
o distributive: for all x,y,z € L holds
xV(yAz)=(xVy)A(xVz)and the dual



o L = (L, <) finite lattice
o distributive: for all x,y,z € L holds
xV(yAz)=(xVy)A(xVz)and the dual

Theorem (M. Erné, J. Heitzig, J. Reinhold; 2002)

A finite lattice is distributive if and only if it can be obtained from
the singleton lattice by a sequence of doublings by principal order
ideals.




o L = (L, <) finite lattice
o distributive: for all x,y,z € L holds
xV(yAz)=(xVy)A(xVz)and the dual

Theorem (¢; 2018)

A congruence-uniform lattice L is distributive if and only if
CLO(L) is the face poset of Can(L).




o L = (L, <) finite lattice
o distributive: for all x,y,z € L holds
xV(yAz)=(xVy)A(xVz)and the dual

Corollary (#; 2018)

Every finite distributive lattice has the intersection property.




Thank You.



@ P = (P, <) finite poset
@ Mobius function: the map pp: P x P — Z given by

1, ifx=y,
up(xr,y) ={ = L pp(xz), ifx<y,

x<z<y
0, otherwise



@ P = (P, <) finite poset

@ Mobius function: the map pp: P x P — Z given by

1/ lf X = y,
() = { = 5 () ifx<y
0, otherwise

Theorem (G.-C. Rota; 1964)

Let P = (P, <) be a finite poset, and let f,g: P x P — Z. It
holds f(y) = Y.<y 8(x) if and only if g(y) = Lx<y (X)pp (%, Y)-




@ P = (P, <) finite bounded poset; 0,1 least/ greatest
element
@ Mobius function: the map pp: P x P — Z given by

1/ lf X = y,
() = { = 5 () ifx<y
0, otherwise

Theorem (P. Hall; 1936)

Let P = (P, <) be a finite bounded poset. The reduced Euler
characteristic of the order complex of (P \ {0,1}, <) equals

1p(0,1) up to sign.




o L = (L, <) finite lattice

Theorem (¢; 2019)

Let L be a finite lattice and let © be a lattice congruence of L. If
CLO(L) has the intersection property, then so does CLO(L/®).
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o L = (L, <) finite lattice

@ join irreducible: an element j € L such that whenever
j=xVy,thenje {x,y}

Theorem (¢; 2019)

Let £ = (L, <) be a finite lattice, and let x,y € L such that

¥(j) € ¥ (x) N¥(y) for some join-irreducible element j € L. If
j € [xy,x] N[y, y]. Then LIj] is spherical if and only if L is, but
CLO(L[f]) is not a meet-semilattice.
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o L = (L, <) finite lattice

@ join semidistributive: for all x,y,z € L holds
xVy=xVzimpliesxVz=xV(yAz)

o meet semidistributive: dual is join semidistributive

@ semidistributive: join and meet semidistributive

A finite lattice is join-semidistributive if and only if every element
admits a canonical join representation.
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o L = (L, <) finite lattice

@ join semidistributive: for all x,y,z € L holds
xVy=xVzimpliesxVz=xV(yAz)

o meet semidistributive: dual is join semidistributive

@ semidistributive: join and meet semidistributive

Theorem (A. Day; 1979)

Every congruence-uniform lattice is semidistributive.
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