The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property o $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

The Core Label Order of a Congruence-Uniform Lattice

Henri Mühle

TU Dresden

March 01, 2019 AAA'97, TU Wien

Characterization

The Core Label Order

2 Lattice Property of $CLO(\mathcal{L})$

Characterization

The Core Label Order

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property o $CLO(\mathcal{L})$

• $\mathcal{P} = (P, \leq)$ finite poset; $X \subseteq P$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property o $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Latticor • $\mathcal{P} = (P, \leq)$ finite poset; $X \subseteq P$

•
$$P_{\leq X} \stackrel{\text{def}}{=} \{ p \in P \mid p \leq x \text{ for some } x \in X \}$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform

•
$$\mathcal{P} = (P, \leq)$$
 finite poset; $X \subseteq P$; $\mathbf{2} = (\{0, 1\}, \leq)$

•
$$P_{\leq X} \stackrel{\text{def}}{=} \{ p \in P \mid p \leq x \text{ for some } x \in X \}$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

•
$$\mathcal{P} = (P, \leq)$$
 finite poset; $X \subseteq P$; $\mathbf{2} = (\{0, 1\}, \leq)$

•
$$P_{\leq X} \stackrel{\text{def}}{=} \{ p \in P \mid p \leq x \text{ for some } x \in X \}$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

•
$$\mathcal{P} = (P, \leq)$$
 finite poset; $X \subseteq P$; $\mathbf{2} = (\{0, 1\}, \leq)$

•
$$P_{\leq X} \stackrel{\text{def}}{=} \{ p \in P \mid p \leq x \text{ for some } x \in X \}$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Latticer

•
$$\mathcal{P} = (P, \leq)$$
 finite poset; $X \subseteq P$; $\mathbf{2} = (\{0, 1\}, \leq)$

•
$$P_{\leq X} \stackrel{\text{def}}{=} \{ p \in P \mid p \leq x \text{ for some } x \in X \}$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Latticer

•
$$\mathcal{P} = (P, \leq)$$
 finite poset; $X \subseteq P$; $\mathbf{2} = (\{0, 1\}, \leq)$

•
$$P_{\leq X} \stackrel{\text{def}}{=} \{ p \in P \mid p \leq x \text{ for some } x \in X \}$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Latticer

•
$$\mathcal{P} = (P, \leq)$$
 finite poset; $X \subseteq P$; $\mathbf{2} = (\{0, 1\}, \leq)$

•
$$P_{\leq X} \stackrel{\text{def}}{=} \{ p \in P \mid p \leq x \text{ for some } x \in X \}$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Latticer

•
$$\mathcal{P} = (P, \leq)$$
 finite poset; $X \subseteq P$; $\mathbf{2} = (\{0, 1\}, \leq)$

•
$$P_{\leq X} \stackrel{\text{def}}{=} \{ p \in P \mid p \leq x \text{ for some } x \in X \}$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{P} = (P, \leq)$ finite poset; $X \subseteq P$; $\mathbf{2} = (\{0, 1\}, \leq)$

• order convex: for all $x, y, z \in P$ with $x \le y \le z$, then $x, z \in X$ implies $y \in X$

Theorem (A. Day; 1970)

If $\mathcal{L} = (L, \leq)$ is a finite lattice and $X \subseteq L$ is order convex, then $\mathcal{L}[X]$ is a lattice, too.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- **congruence uniform**: can be obtained from the singleton by a sequence of doublings by intervals
- label edges according to creation step $\rightsquigarrow \lambda$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property o $CLO(\mathcal{L})$

• nucleus:
$$x_{\downarrow} \stackrel{\text{def}}{=} \bigwedge_{y \in L: y < x} y$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

• **nucleus**:
$$x_{\downarrow} \stackrel{\text{def}}{=} \bigwedge_{y \in L: y < x} y$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

• **nucleus**:
$$x_{\downarrow} \stackrel{\text{def}}{=} \bigwedge_{y \in L: y < x} y$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

• **nucleus**:
$$x_{\downarrow} \stackrel{\text{def}}{=} \bigwedge_{y \in L: y < x} y$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice; $x \in L$

• **nucleus**:
$$x_{\downarrow} \stackrel{\text{def}}{=} \bigwedge_{y \in L: y < x} y$$

• **core**: interval $[x_{\downarrow}, x]$ in \mathcal{L}

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property o $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice; $x \in L$

• **nucleus**:
$$x_{\downarrow} \stackrel{\text{def}}{=} \bigwedge_{y \in L: y < x} y$$

- **core**: interval $[x_{\downarrow}, x]$ in \mathcal{L}
- core labels: $\Psi(x) \stackrel{\text{def}}{=} \{\lambda(u, v) \mid x_{\downarrow} \leq u \lessdot v \leq x\}$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property o $CLO(\mathcal{L})$

•
$$\mathcal{L} = (L, \leq)$$
 finite lattice; $x \in L$

• nucleus:
$$x_{\downarrow} \stackrel{\text{def}}{=} \bigwedge_{y \in L: y < x} y$$

- **core**: interval $[x_{\downarrow}, x]$ in \mathcal{L}
- core labels: $\Psi(x) \stackrel{\text{def}}{=} \{\lambda(u, v) \mid x_{\downarrow} \le u \lessdot v \le x\}$

$$\Psi(x) = \{3, 4, 5\}$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

• core label order:

$$\operatorname{CLO}(\mathcal{L}) \stackrel{\text{def}}{=} \left(\left\{ \Psi(x) \mid x \in L \right\}, \subseteq \right)$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property o $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

• core label order:

$$\operatorname{CLO}(\mathcal{L}) \stackrel{\text{def}}{=} \left(\left\{ \Psi(x) \mid x \in L \right\}, \subseteq \right)$$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property o $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice

• core label order:

$$\operatorname{CLO}(\mathcal{L}) \stackrel{\mathrm{def}}{=} \left(\left\{ \Psi(x) \mid x \in L \right\}, \subseteq \right)$$

 $\bullet\ {\rm CLO}({\cal L})$ is not necessarily a meet-semilattice

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice

• core label order:

 $\operatorname{CLO}(\mathcal{L}) \stackrel{\mathrm{def}}{=} \left(\left\{ \Psi(x) \mid x \in L \right\}, \subseteq \right)$

 $\bullet\ {\rm CLO}({\cal L})$ is not necessarily a meet-semilattice

Question (N. Reading; 2016)

For which congruence-uniform lattices \mathcal{L} is $CLO(\mathcal{L})$ a lattice, too?
Outline

Characterization

(2) Lattice Property of $CLO(\mathcal{L})$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice

• $\mu_{\mathcal{L}}$ Möbius function

Möbius Function

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Latticer

- $\mathcal{L} = (L, \leq)$ finite lattice; $\hat{0}, \hat{1}$ least/greatest element
- $\mu_{\mathcal{L}}$ Möbius function

Möbius Function

• Möbius invariant: $\mu(\mathcal{L}) \stackrel{\text{def}}{=} \mu_{\mathcal{L}}(\hat{0}, \hat{1})$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- $\mathcal{L} = (L, \leq)$ finite lattice; $\hat{0}, \hat{1}$ least/greatest element
- $\mu_{\mathcal{L}}$ Möbius function

Möbius Function

- Möbius invariant: $\mu(\mathcal{L}) \stackrel{\text{def}}{=} \mu_{\mathcal{L}}(\hat{0}, \hat{1})$
- spherical: $\mu(\mathcal{L}) \in \{-1, 1\}$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- $\mathcal{L} = (L, \leq)$ finite lattice; $\hat{0}, \hat{1}$ least/greatest element
- $\mu_{\mathcal{L}}$ Möbius function

Möbius Function

- Möbius invariant: $\mu(\mathcal{L}) \stackrel{\text{def}}{=} \mu_{\mathcal{L}}(\hat{0}, \hat{1})$
- spherical: $\mu(\mathcal{L}) \in \{-1, 1\}$

Theorem (T. McConville; 2015)

If \mathcal{L} is congruence uniform, then $\mu(\mathcal{L}) \in \{-1, 0, 1\}$.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- $\mathcal{L} = (L, \leq)$ finite lattice; $\hat{0}, \hat{1}$ least/greatest element
- $\mu_{\mathcal{L}}$ Möbius function

Möbius Function

- Möbius invariant: $\mu(\mathcal{L}) \stackrel{\text{def}}{=} \mu_{\mathcal{L}}(\hat{0}, \hat{1})$
- spherical: $\mu(\mathcal{L}) \in \{-1, 1\}$

Theorem (🐇; 2019)

Let \mathcal{L} be congruence uniform. If $CLO(\mathcal{L})$ is a lattice, then \mathcal{L} is spherical.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Latticer • $\mathcal{L} = (L, \leq)$ finite lattice

• intersection property: for all $x, y \in L$ exists $z \in L$ such that $\Psi(x) \cap \Psi(y) = \Psi(z)$ Intersection Property

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- $\mathcal{L} = (L, \leq)$ finite lattice
- intersection property: for all $x, y \in L$ exists $z \in L$ such that $\Psi(x) \cap \Psi(y) = \Psi(z)$ Intersection Property

Theorem (🐇; 2019)

Let \mathcal{L} be congruence uniform. Then, $CLO(\mathcal{L})$ is a meet-semilattice if and only if \mathcal{L} has the intersection property.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- $\mathcal{L} = (L, \leq)$ finite lattice
- intersection property: for all $x, y \in L$ exists $z \in L$ such that $\Psi(x) \cap \Psi(y) = \Psi(z)$ Intersection Property

Corollary (%; 2019)

Let \mathcal{L} be congruence uniform. Then, $CLO(\mathcal{L})$ is a lattice if and only if \mathcal{L} is spherical and has the intersection property.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

 $\begin{array}{l} \text{Lattice} \\ \text{Property of} \\ \text{CLO}(\mathcal{L}) \end{array}$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice

• intersection property: for all $x, y \in L$ exists $z \in L$ such that $\Psi(x) \cap \Psi(y) = \Psi(z)$ Intersection Property

Question (🐇; 2019)

Which congruence-uniform lattices have the intersection property?

Outline

Characterization

The Core Label Order of a Congruence-Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • *M* finite set; $\wp(M)$ power set of *M*

The Core Label Order of a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • *M* finite set; $\wp(M)$ power set of *M*

• Boolean lattice: $Bool(M) \stackrel{\text{def}}{=} (\wp(M), \subseteq)$

The Core Label Order of a Congruence-Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • *M* finite set; $\wp(M)$ power set of *M*

• Boolean lattice: $Bool(M) \stackrel{\text{def}}{=} (\wp(M), \subseteq)$

Theorem

Every finite Boolean lattice is congruence uniform.

The Core Label Order of a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • *M* finite set; $\wp(M)$ power set of *M*

• **Boolean lattice**: Bool(M) $\stackrel{\text{def}}{=} (\wp(M), \subseteq)$

The Core Label Order of a Congruence-Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • *M* finite set; $\wp(M)$ power set of *M*

• Boolean lattice: $Bool(M) \stackrel{\text{def}}{=} (\wp(M), \subseteq)$

Theorem (🐇; 2019)

Let \mathcal{L} be congruence uniform. Then, $\mathcal{L} \cong \text{Bool}(M)$ for some finite set M if and only if $\mathcal{L} \cong \text{CLO}(\mathcal{L})$.

The Core Label Order of a Congruence-Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice; $x \in L$

• join representation: $X \subseteq L$ such that $x = \bigvee X$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice; $x \in L$

• join representation: $X \subseteq L$ such that $x = \bigvee X$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

- $\mathcal{L} = (L, \leq)$ finite lattice; $x \in L$
- join representation: $X \subseteq L$ such that $x = \bigvee X$
- *X* refines *Y*: $L_{\leq X} \subseteq L_{\leq Y}$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Orde

Lattice Property of $CLO(\mathcal{L})$

- $\mathcal{L} = (L, \leq)$ finite lattice; $x \in L$
- join representation: $X \subseteq L$ such that $x = \bigvee X$
- *X* refines *Y*: $L_{\leq X} \subseteq L_{\leq Y}$
- canonical join representation: minimum with respect to refinement $\rightsquigarrow \Gamma(x)$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- $\mathcal{L} = (L, \leq)$ congruence-uniform lattice; $x \in L$
- join representation: $X \subseteq L$ such that $x = \bigvee X$
- X refines $Y: L_{\leq X} \subseteq L_{\leq Y}$
- canonical join representation: minimum with respect to refinement $\rightsquigarrow \Gamma(x)$

Theorem (A. Day; 1979)

Every element of a congruence-uniform lattice admits a canonical join representation.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

- $\mathcal{L} = (L, \leq)$ congruence-uniform lattice; $x \in L$
- join representation: $X \subseteq L$ such that $x = \bigvee X$
- *X* refines *Y*: $L_{\leq X} \subseteq L_{\leq Y}$
- canonical join representation: minimum with respect to refinement $\rightsquigarrow \Gamma(x)$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

- $\mathcal{L} = (L, \leq)$ congruence-uniform lattice; $x \in L$
- join representation: $X \subseteq L$ such that $x = \bigvee X$
- *X* refines *Y*: $L_{\leq X} \subseteq L_{\leq Y}$
- canonical join representation: minimum with respect to refinement $\rightsquigarrow \Gamma(x)$

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

- $\mathcal{L} = (L, \leq)$ congruence-uniform lattice; $x \in L$
- join representation: $X \subseteq L$ such that $x = \bigvee X$
- *X* refines *Y*: $L_{\leq X} \subseteq L_{\leq Y}$
- canonical join representation:

The Core Label Order of a Congruence-Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

• $\mathcal{L} = (L, \leq)$ finite lattice

Proposition (N. Reading; 2015)

For any finite lattice, the set of canonical join representations is closed under taking subsets.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

• $\mathcal{L} = (L, \leq)$ finite lattice

 • canonical join complex: simplicial complex whose faces are canonical join representations → Can(x)

Proposition (N. Reading; 2015)

For any finite lattice, the set of canonical join representations is closed under taking subsets.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice

 canonical join complex: simplicial complex whose faces are canonical join representations → Can(x)

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

- canonical join complex: simplicial complex whose faces are canonical join representations → Can(x)
- face poset: set of faces ordered by inclusion

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice

- canonical join complex: simplicial complex whose faces are canonical join representations → Can(x)
- face poset: set of faces ordered by inclusion

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices • $\mathcal{L} = (L, \leq)$ finite lattice

- canonical join complex: simplicial complex whose faces are canonical join representations → Can(x)
- face poset: set of faces ordered by inclusion

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

• $\mathcal{L} = (L, \leq)$ finite lattice

• **distributive**: for all $x, y, z \in L$ holds $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ and the dual

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

- $\mathcal{L} = (L, \leq)$ finite lattice
- **distributive**: for all $x, y, z \in L$ holds $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ and the dual

Theorem (M. Erné, J. Heitzig, J. Reinhold; 2002)

A finite lattice is distributive if and only if it can be obtained from the singleton lattice by a sequence of doublings by principal order ideals.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

• $\mathcal{L} = (L, \leq)$ finite lattice

• **distributive**: for all $x, y, z \in L$ holds $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ and the dual

Theorem (🐇; 2018)

A congruence-uniform lattice \mathcal{L} is distributive if and only if $CLO(\mathcal{L})$ is the face poset of $Can(\mathcal{L})$.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

• $\mathcal{L} = (L, \leq)$ finite lattice

• **distributive**: for all $x, y, z \in L$ holds $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ and the dual

Corollary (%; 2018)

Every finite distributive lattice has the intersection property.

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

The Core Label Order

Lattice Property of $CLO(\mathcal{L})$

Characterization of Certain Congruence-Uniform Lattices

Thank You.
Möbius Function

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{P} = (P, \leq)$ finite poset
- Möbius function: the map $\mu_P \colon P \times P \to \mathbb{Z}$ given by

$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum_{x \le z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0, & \text{otherwise} \end{cases}$$

Möbius Function

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

- $\mathcal{P} = (P, \leq)$ finite poset
- Möbius function: the map $\mu_P \colon P \times P \to \mathbb{Z}$ given by

$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum_{x \le z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0, & \text{otherwise} \end{cases}$$

Theorem (G.-C. Rota; 1964)

Let $\mathcal{P} = (P, \leq)$ be a finite poset, and let $f, g: P \times P \to \mathbb{Z}$. It holds $f(y) = \sum_{x \leq y} g(x)$ if and only if $g(y) = \sum_{x \leq y} g(x) \mu_{\mathcal{P}}(x, y)$.

Möbius Function

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

- *P* = (*P*, ≤) finite bounded poset; 0, 1 least/greatest element
- Möbius function: the map $\mu_{\mathcal{P}} \colon P \times P \to \mathbb{Z}$ given by

$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum_{x \le z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0, & \text{otherwise} \end{cases}$$

Theorem (P. Hall; 1936)

Let $\mathcal{P} = (P, \leq)$ be a finite bounded poset. The reduced Euler characteristic of the order complex of $(P \setminus \{\hat{0}, \hat{1}\}, \leq)$ equals $\mu_{\mathcal{P}}(\hat{0}, \hat{1})$ up to sign.

The Intersection Property

The Core Label Order o: a Congruence Uniform Lattice

Henri Mühle

• $\mathcal{L} = (L, \leq)$ finite lattice

Theorem (🐇; 2019)

Let \mathcal{L} be a finite lattice and let Θ be a lattice congruence of \mathcal{L} . If $CLO(\mathcal{L})$ has the intersection property, then so does $CLO(\mathcal{L}/\Theta)$.

The Intersection Property

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

• $\mathcal{L} = (L, \leq)$ finite lattice

• join irreducible: an element $j \in L$ such that whenever $j = x \lor y$, then $j \in \{x, y\}$

The Intersection Property

The Core Label Order o: a Congruence Uniform Lattice

Henri Mühle

• $\mathcal{L} = (L, \leq)$ finite lattice

• join irreducible: an element $j \in L$ such that whenever $j = x \lor y$, then $j \in \{x, y\}$

Theorem (🐇; 2019)

Let $\mathcal{L} = (L, \leq)$ be a finite lattice, and let $x, y \in L$ such that $\Psi(j) \subseteq \Psi(x) \cap \Psi(y)$ for some join-irreducible element $j \in L$. If $j \in [x_{\downarrow}, x] \cap [y_{\downarrow}, y]$. Then $\mathcal{L}[j]$ is spherical if and only if \mathcal{L} is, but $CLO(\mathcal{L}[j])$ is not a meet-semilattice.

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all *x*, *y*, *z* ∈ *L* holds
 x ∨ *y* = *x* ∨ *z* implies *x* ∨ *z* = *x* ∨ (*y* ∧ *z*)

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all *x*, *y*, *z* ∈ *L* holds
 x ∨ *y* = *x* ∨ *z* implies *x* ∨ *z* = *x* ∨ (*y* ∧ *z*)

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all *x*, *y*, *z* ∈ *L* holds
 x ∨ *y* = *x* ∨ *z* implies *x* ∨ *z* = *x* ∨ (*y* ∧ *z*)

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all x, y, z ∈ L holds
 x ∨ y = x ∨ z implies x ∨ z = x ∨ (y ∧ z)
- meet semidistributive: dual is join semidistributive

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all $x, y, z \in L$ holds $x \lor y = x \lor z$ implies $x \lor z = x \lor (y \land z)$
- meet semidistributive: dual is join semidistributive
- semidistributive: join and meet semidistributive

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all $x, y, z \in L$ holds $x \lor y = x \lor z$ implies $x \lor z = x \lor (y \land z)$
- meet semidistributive: dual is join semidistributive
- semidistributive: join and meet semidistributive

Theorem

A finite lattice is join-semidistributive if and only if every element admits a canonical join representation.

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all $x, y, z \in L$ holds $x \lor y = x \lor z$ implies $x \lor z = x \lor (y \land z)$
- meet semidistributive: dual is join semidistributive
- semidistributive: join and meet semidistributive

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all $x, y, z \in L$ holds $x \lor y = x \lor z$ implies $x \lor z = x \lor (y \land z)$
- meet semidistributive: dual is join semidistributive
- semidistributive: join and meet semidistributive

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all $x, y, z \in L$ holds $x \lor y = x \lor z$ implies $x \lor z = x \lor (y \land z)$
- meet semidistributive: dual is join semidistributive
- semidistributive: join and meet semidistributive

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all $x, y, z \in L$ holds $x \lor y = x \lor z$ implies $x \lor z = x \lor (y \land z)$
- meet semidistributive: dual is join semidistributive
- semidistributive: join and meet semidistributive

The Core Label Order o a Congruence Uniform Lattice

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all $x, y, z \in L$ holds $x \lor y = x \lor z$ implies $x \lor z = x \lor (y \land z)$
- meet semidistributive: dual is join semidistributive
- semidistributive: join and meet semidistributive

The Core Label Order o a Congruence Uniform Lattice

Henri Mühle

- $\mathcal{L} = (L, \leq)$ finite lattice
- join semidistributive: for all $x, y, z \in L$ holds $x \lor y = x \lor z$ implies $x \lor z = x \lor (y \land z)$
- meet semidistributive: dual is join semidistributive
- semidistributive: join and meet semidistributive

Theorem (A. Day; 1979)

Every congruence-uniform lattice is semidistributive.