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The Doubling Construction

P = (P,≤) finite poset; X ⊆ P; 2 =
(
{0, 1},≤

)
order convex: for all x, y, z ∈ P with x ≤ y ≤ z, then
x, z ∈ X implies y ∈ X

Theorem (A. Day; 1970)

If L = (L,≤) is a finite lattice and X ⊆ L is order convex, then
L[X] is a lattice, too.
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L = (L,≤) finite lattice

core label order:
CLO(L) def

=
({

Ψ(x) | x ∈ L
}

,⊆
)

CLO(L) is not necessarily a meet-semilattice

Question (N. Reading; 2016)

For which congruence-uniform lattices L is CLO(L) a lattice,
too?
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µL Möbius function Möbius Function

Möbius invariant: µ(L) def
= µL(0̂, 1̂)

spherical: µ(L) ∈ {−1, 1}

Theorem (T. McConville; 2015)
If L is congruence uniform, then µ(L) ∈ {−1, 0, 1}.
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L = (L,≤) finite lattice; 0̂, 1̂ least/greatest element
µL Möbius function Möbius Function

Möbius invariant: µ(L) def
= µL(0̂, 1̂)

spherical: µ(L) ∈ {−1, 1}

Theorem ( ; 2019)
Let L be congruence uniform. If CLO(L) is a lattice, then L is
spherical.

7 / 14



The Core
Label Order of
a Congruence-

Uniform
Lattice

Henri Mühle

The Core
Label Order

Lattice
Property of
CLO(L)

Characterization
of Certain
Congruence-
Uniform
Lattices

The Intersection Property

L = (L,≤) finite lattice

intersection property: for all x, y ∈ L exists z ∈ L such
that Ψ(x) ∩Ψ(y) = Ψ(z) Intersection Property

8 / 14



The Core
Label Order of
a Congruence-

Uniform
Lattice

Henri Mühle

The Core
Label Order

Lattice
Property of
CLO(L)

Characterization
of Certain
Congruence-
Uniform
Lattices

The Intersection Property

L = (L,≤) finite lattice

intersection property: for all x, y ∈ L exists z ∈ L such
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Theorem ( ; 2019)
Let L be congruence uniform. Then, CLO(L) is a
meet-semilattice if and only if L has the intersection property.
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L = (L,≤) finite lattice

intersection property: for all x, y ∈ L exists z ∈ L such
that Ψ(x) ∩Ψ(y) = Ψ(z) Intersection Property

Corollary ( ; 2019)

Let L be congruence uniform. Then, CLO(L) is a lattice if and
only if L is spherical and has the intersection property.
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L = (L,≤) finite lattice

intersection property: for all x, y ∈ L exists z ∈ L such
that Ψ(x) ∩Ψ(y) = Ψ(z) Intersection Property

Question ( ; 2019)
Which congruence-uniform lattices have the intersection
property?
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M finite set; ℘(M) power set of M

Boolean lattice: Bool(M)
def
=
(
℘(M),⊆

)

Theorem
Every finite Boolean lattice is congruence uniform.
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A Characterization of Boolean Lattices

M finite set; ℘(M) power set of M

Boolean lattice: Bool(M)
def
=
(
℘(M),⊆

)

Theorem ( ; 2019)
Let L be congruence uniform. Then, L ∼= Bool(M) for some
finite set M if and only if L ∼= CLO(L).
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join representation: X ⊆ L such that x =

∨
X

X refines Y: L≤X ⊆ L≤Y

canonical join representation: minimum with respect
to refinement  Γ(x)

Theorem (A. Day; 1979)
Every element of a congruence-uniform lattice admits a canonical
join representation.
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L = (L,≤) congruence-uniform lattice; x ∈ L
join representation: X ⊆ L such that x =

∨
X

X refines Y: L≤X ⊆ L≤Y

canonical join representation:
Γ(x) =

{
λ(y, x) | y l x

}
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The Canonical Join Complex

L = (L,≤) finite lattice

Proposition (N. Reading; 2015)
For any finite lattice, the set of canonical join representations is
closed under taking subsets.
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Distributive Lattices

L = (L,≤) finite lattice

distributive: for all x, y, z ∈ L holds
x∨ (y∧ z) = (x∨ y) ∧ (x∨ z) and the dual

Theorem (M. Erné, J. Heitzig, J. Reinhold; 2002)
A finite lattice is distributive if and only if it can be obtained from
the singleton lattice by a sequence of doublings by principal order
ideals.
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L = (L,≤) finite lattice

distributive: for all x, y, z ∈ L holds
x∨ (y∧ z) = (x∨ y) ∧ (x∨ z) and the dual

Theorem ( ; 2018)
A congruence-uniform lattice L is distributive if and only if
CLO(L) is the face poset of Can(L).
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L = (L,≤) finite lattice

distributive: for all x, y, z ∈ L holds
x∨ (y∧ z) = (x∨ y) ∧ (x∨ z) and the dual

Corollary ( ; 2018)
Every finite distributive lattice has the intersection property.
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P = (P,≤) finite poset

Möbius function: the map µP : P× P→ Z given by

µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0, otherwise

15 / 14



The Core
Label Order of
a Congruence-

Uniform
Lattice

Henri Mühle
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Möbius function: the map µP : P× P→ Z given by

µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0, otherwise

Theorem (G.-C. Rota; 1964)
Let P = (P,≤) be a finite poset, and let f , g : P× P→ Z. It
holds f (y) = ∑x≤y g(x) if and only if g(y) = ∑x≤y g(x)µP (x, y).

15 / 14



The Core
Label Order of
a Congruence-

Uniform
Lattice

Henri Mühle

Möbius Function

P = (P,≤) finite bounded poset; 0̂, 1̂ least/greatest
element
Möbius function: the map µP : P× P→ Z given by

µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0, otherwise

Theorem (P. Hall; 1936)
Let P = (P,≤) be a finite bounded poset. The reduced Euler
characteristic of the order complex of

(
P \ {0̂, 1̂},≤) equals

µP (0̂, 1̂) up to sign.
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The Intersection Property

L = (L,≤) finite lattice

Theorem ( ; 2019)
Let L be a finite lattice and let Θ be a lattice congruence of L. If
CLO(L) has the intersection property, then so does CLO(L/Θ).
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The Intersection Property

L = (L,≤) finite lattice

join irreducible: an element j ∈ L such that whenever
j = x∨ y, then j ∈ {x, y}

Theorem ( ; 2019)
Let L = (L,≤) be a finite lattice, and let x, y ∈ L such that
Ψ(j) ⊆ Ψ(x) ∩Ψ(y) for some join-irreducible element j ∈ L. If
j ∈ [x↓, x] ∩ [y↓, y]. Then L[j] is spherical if and only if L is, but
CLO

(
L[j]

)
is not a meet-semilattice.
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x∨ y = x∨ z implies x∨ z = x∨ (y∧ z)
meet semidistributive: dual is join semidistributive
semidistributive: join and meet semidistributive

Theorem
A finite lattice is join-semidistributive if and only if every element
admits a canonical join representation.
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Semidistributive Lattices

L = (L,≤) finite lattice

join semidistributive: for all x, y, z ∈ L holds
x∨ y = x∨ z implies x∨ z = x∨ (y∧ z)
meet semidistributive: dual is join semidistributive
semidistributive: join and meet semidistributive

Theorem (A. Day; 1979)
Every congruence-uniform lattice is semidistributive.
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