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Theorem (G. Kreweras, 1972)

Forn > 0, the cardinality of NC,, is

Cat(n) = —— (2”).

n+1
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@ dual refinement order
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o NMC,, = (I\Enr Sdref)
@let0=12|---jnand1=12---n
o let[n| ={1,2,...,n}

Theorem (G. Kreweras, 1972)
Forn > 0, the poset NC,, is a lattice.
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@ M-chain: the chain D above
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@ supersolvable: lattice P together with a maximal chain
D of P such that D together with any other chain of P
generates a distributive sublattice of P

@ M-chain: the chain D above

Theorem (P. Hersh, 1999)
Forn > 1, the lattice NC,, is supersolvable.




@ supersolvable: lattice P together with a maximal chain
D of P such that D together with any other chain of P
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@ M-chain: the chain D above

@ X; .. noncrossing partition with only non-singleton
block [i — 1] U {n}



@ supersolvable: lattice P together with a maximal chain
D of P such that D together with any other chain of P
generates a distributive sublattice of P

@ M-chain: the chain D above

@ X; .. noncrossing partition with only non-singleton
block [i — 1] U {n}

Proposition (2%, 2017)
Forn > 1, the chain {xq,xy, . .., Xy } is an M-chain of NC,,.




@ P = (P,<) .. a(finite) poset
@ Mobius function: the map pp : P x P — Z defined by
1, ifx=y,
yp(x,y) —!— X ;blp(.X',Z), if x < Y

x<z<y
0 otherwise
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@ P = (P,<) .. a(finite) poset
@ Mobius function: the map pp : P x P — Z defined by

1, ifx=y,

_ )= x,z), ifx<uy,

up(x,y) = x§§<y pup(x,z) y
0 otherwise
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@ P = (P,<) .. a(finite) poset
@ Mobius function: the map pp : P x P — Z defined by

1, ifx=y,

I x,z), ifx<uy,

up(x,y) = x§§<y pp(x,z) y
0 otherwise
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@ P = (P,<) .. a(finite) poset
@ Mobius function: the map pp : P x P — Z defined by

L ifx=y,
up(x,y) =~ x§§<y up(x,z), ifx<y,
0 otherwise
1
b
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—up(0,1) = —2up(0,0)



@ P = (P,<) .. a(finite) poset
@ Mobius function: the map pp : P x P — Z defined by

L ifx=y,
up(x,y) =~ x§§<y up(x,z), ifx<y,
0 otherwise
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@ P = (P,<) .. a(finite) poset
@ Mobius function: the map pp : P x P — Z defined by
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@ P = (P,<) .. a(finite) poset
@ Mobius function: the map pp : P x P — Z defined by

1, ifx=y,

_ )= x,z), ifx<uy,

up(x,y) = x§§<y pp(x,z) Yy
0 otherwise

Theorem (G. Kreweras, 1972)

Forn > 1 we have
Upae,(0,1) = (—1)”_1 Cat(n —1).




@ a;; .. noncrossing partition with only non-singleton
block {i,j}

o An:{ai,j]1§i<j§n}

@ let < be any partial order on A,; X C A,
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@ bounded below: for every x € X thereis a € A, such
thata<xand a <gper V X

@ NBB: no nonempty subset of X is BB
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@ bounded below: for every x € X thereis a € A, such
thata<xand a <gper V X

@ NBB: no nonempty subset of X is BB
@ NBB-base for x: Xis NBB and \/ X = x
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@ bounded below: for every x € X thereis a € A, such
thata<xand a <gper V X

@ NBB: no nonempty subset of X is BB
@ NBB-base for x: Xis NBB and \/ X = x

Theorem (A. Blass, B. Sagan, 1997)

Let P = (P, <) be a finite lattice and < any partial order on the
atoms of P. For x € P we have

up(0,0) =Y (-1,

X

where the sum runs over the NBB-bases for x.




@ bounded below: for every x € X thereis a € A, such
thata<xand a <gper V X

@ NBB: no nonempty subset of X is BB
@ NBB-base for x: Xis NBB and \/ X = x

Corollary (The Crosscut Theorem; G.-C. Rota, 1964)

Let P = (P, <) be a finite lattice. For x € P we have

up(0,2) = ) (-1,

X

where the sum runs over all subsets of atoms of P whose join is x.




@ subsets of A, correspond to certain graphs on [1]

{a1g, a3, a4} < 1 2—3 4



@ let {x1,xy,...,x,} be the M-chain from before
o letA;={a€ Ayl a Zarer xi and a <grer Xiy1}
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@ let {x1,xy,...,x,} be the M-chain from before
o letA;={a€ Ayl a Zarer xi and a <grer Xiy1}

o leta Ja'ifand onlyifa € A;,a’ € Ajandi <j

Proposition (2%, 2017)

Forn > 1 the NBB-bases for 1 in NC,, are precisely those
maximal chains of (A, <), whose associated graph is a
noncrossing tree with an edge between 1 and n such that the
removal of this edge yields two trees on vertices [k| and
{k+1,k+2,...,n} forsomek € [n—1].




@ let {x1,xy,...,x,} be the M-chain from before
o letA;={a€ Ayl a Zarer xi and a <grer Xiy1}

o leta Ja'ifand onlyifa € A;,a’ € Ajandi <j

Forn > 1 we have
U, (0,1) = (—1)”_1 Cat(n —1).
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@ for x € NC, write i ~y jif {i,j} C B € x



@ for x € NC, write i ~y jif {i,j} C B € x
@ incidence pattern: (i,j) € X C [n] x [n]
@ block pattern: Y € Y C p([n])
o for Z,, C NC,, define
Za|X; V] = {x € Zy | i~xjfor (i,j) € X,
and Be xforBe )Y}



For X1,Xa,...,Xs C [n] x [n] and Y1, Vs, ..., Vs C p([n]) let

P, = U Z\]Cn[Xs/' ys]
=il

Study the poset (NCy, \ P, <dref) of noncrossing partitions
avoiding the “patterns” IP,,.




For X1,Xa,...,Xs C [n] x [n] and Y1, Vs, ..., Vs C p([n]) let

P, = U Z\]Cn[Xs/' ys]
=il

Study the poset (NCy, \ P, <dref) of noncrossing partitions
avoiding the “patterns” IP,,.

@ easy examples
o NC,[@;{B}] = I;_; NCy,, where the n; depend on B
o NC,[{(i,/)};@] = {x € NCy | ajj <gref X}



@ consider the following patterns:
[+} letXl = @, yl = {{1’1 — 1,1’1}}
o letXo = {(1L,n—1)}, Yo = {{n}}

o straightforward:

NCi[X1; 1] = Cat(n —2) = |NCu[X2; V2|

o define PE, = NC, \ (NCu[X1; 1] UNC,[X2; V2] )
o letPE, = (PEn/ Sdref)
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o |PE,| = Cat(n) —2Cat(n — 2)

Lemma (M. Bruce, M. Dougherty, M. Hlavacek,

R. Kudo, I. Nicolas, 2016)
We have |PE3| = 3 and for n > 4 we have

5 9 2n —4
[PEx| = <n+1+n—3) (n—4)'




@ recall: x; has non-singleton block [i — 1] U {n}

Theorem (¢, 2017)

For n > 3, the poset PE,, is a supersolvable lattice with M-chain
{x1, %2, ..., %Xn}.




@ NBB-bases for 1 in PE, are NBB-bases for 1in NC,,
o let -/Zln =A, \ {al,i’l—l/ an—l,n}

Proposition (2%, 2017)

For n > 3 the NBB-bases for 1 in 'PE,, are precisely those
maximal chains of (A,, <), whose associated graph is a
noncrossing tree with an edge between 1 and n such that the
remouval of this edge yields two trees on vertices [k] and
{k+1,k+2,...,n} forsomek € [n—2].
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o let -/Zln =A, \ {al,i’l—l/ an—l,n}

Proposition (2%, 2017)

For n > 3 the NBB-bases for 1 in 'PE,, are precisely those
maximal chains of (A,, <), whose associated graph is a
noncrossing tree with an edge between 1 and n such that the
remouval of this edge yields two trees on vertices [k] and
{k+1,k+2,...,n} forsomek € [n—2].
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@ NBB-bases for 1 in PE, are NBB-bases for 1 in NC,,

Theorem (¢, 2017)

For n > 3, we have

pe, (0,1) = (—1)"1 <Cat(n —1) —2Cat(n — 2)) :




@ NBB-bases for 1 in PE, are NBB-bases for 1 in NC,,

Theorem (¢, 2017)

For n > 3, we have

pre, (0,1) = (_1)11—1% (2:__45)




Thank You.



o [n]={12,...,n}
@ parking function: a map f : [n] — [n] such that for all
k € [n] the set f~1([k]) has at least k elements

@ IPF, .. set of all parking functions of length n
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@ parking function: a map f : [n] — [n] such that for all
k € [n] the set f~1([k]) has at least k elements

@ IPF, .. set of all parking functions of length n

o IPF;:
(1,1,1)
(1,1,2) (1,2,1) (2,1,1)
(1,2,2) (2,1,2) (2,2,1)
(1,1,3) (1,3,1) (3,1,1)
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)
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@ parking function: a map f : [n] — [n] such that for all
k € [n] the set f~1([k]) has at least k elements

@ IPF, .. set of all parking functions of length n
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o [n]={12,...,n}
@ parking function: a map f : [n] — [n] such that for all
k € [n] the set f~1([k]) has at least k elements

@ IPF, .. set of all parking functions of length n




Theorem (Folklore)

For n > 0, the cardinality of PF,, is (n +1)"1.




Theorem (Folklore)

For n > 0, the cardinality of PP, is (n +1)"~1.

Proof (H. Pollack, 1974).

@ arrange n + 1 parking spaces on a circle
@ now all n cars can park

@ (n+ 1)" possible assignments

@ .15 (n+1)" rotation classes

@ parking function: space n + 1 remains empty

@ one parking function per rotation class




o let X = {x1,x0,..., %}, Y ={y1,¥2, .-, Yn}
@ &, acts diagonally on Q[X, Y| by

U‘f(.Xl,xz,- . -/xn,ylz]/zl- . -,yn)

= f(Xo(1): X0 (2)s - - -+ Xo(n) Yo (1) Yo@)r - - -+ Yor(n))
@ Q[X,Y]®" is generated by

pri(X,Y) =Y xlys
i=1



o (bigraded) ring of diagonal coinvariants

DR, = Q[X, Y]/ (pnx(X,Y) | h+k > 0)



o (bigraded) ring of diagonal coinvariants

DR, = Q[X, Y]/ (pnx(X,Y) | h+k > 0)

Theorem (M. Haiman, 2001)

Forn > 1 we have

dimDR, = (n +1)"" L.




o (bigraded) Hilbert series

H(DRy;q,t) = Y #g dim DR}/

i,j>0



o (bigraded) Hilbert series

H(DRy;q,t) = Y #g dim DR}/

i,j>0

Conjecture (J. Haglund & N. Loehr, 2005)

Forn > 1 we have

H(DRy;q,t) = ) gfino(P) garea(P)

PelPF,




o (bigraded) Frobenius series

F(DRy;q,t) = Y tg Y mult(x)‘;DR,(f’j))sA(X)
>0  Afn



o (bigraded) Frobenius series

F(DRy;q,t) = Y tg Y mult(x)‘;DR,(f’j))sA(X)
>0  Afn

Conjecture (The Shuffle Conjecture; ]. Haglund,

M. Haiman, N. Loehr, J. Remmel & A. Ulyanov, 2005)

Forn > 1 we have

F(DRn;q, t) _ Z qdinv(P)tarea(P)SP(X)'
PelPF,




@ generalizations of the Shuffle Conjecture involve sums
over parking functions with undesired spaces




o IC [n
o parking function avoiding I: f € PF, withf N[ =@




@ for simplicity:

PF,; = {f € PF, |k &f, butl € f foralll > k}




@ for simplicity:
P, = {f € PF, | k¢ f, butlefforalll >k}

o it follows: PF, = &, WIPF, 1 W ---WIPF,,




@ for simplicity:
P, = {f € PF, | k¢ f, butlefforalll >k}

o it follows: PF, = &, WIPF, 1 W ---WIPF,,

01PJF3:
(1,1,1)
(1,1,2) (1,2,1) (2,1,1)
(1,2,2) (2,1,2) (2,2,1)
(1,1,3) (1,3,1) (3,1,1)
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)



@ for simplicity:
P, = {f € PF, | k¢ f, butlefforalll >k}

o it follows: PF, = &, WIPF, 1 W ---WIPF,,

o [PFs3;
(1,1,1)
(1,1,2) (1,2,1) (2,1,1)
(1,2,2) (2,1,2) (2,2,1)
(1,1,3) (1,3,1) (3,1,1)
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)



@ for simplicity:

PF,; = {f € PF, |k &f, butl € f foralll > k}

o it follows: PF, = &, WIPF, 1 W ---WIPF,,

o IPJF3122

(1,1,1)
(1,1,2)
(1,2,2)
(1,1,3)
(1,2,3)

(
(
(
(

1,2,1
2,1,2
1,3,1
1,3,2

) (
) (
) (
) (

2,1,1
2,2,1
3,1,1
2,1,3

)
)
)
)

(2,3,1)

(3,1,2)

(3,2,1)



@ for simplicity:
P, = {f € PF, | k¢ f, butlefforalll >k}

o it follows: PF, = &, WIPF, 1 W ---WIPF,,

@ [PF33:
(1,1,1)
(1,1,2) (1,2,1) (2,1,1)
(1,2,2) (2,1,2) (2,2,1)
(1,1,3) (1,3,1) (3,1,1)
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)



@ for simplicity:
P, = {f € PF, | k¢ f, butlefforalll >k}

o it follows: PF, = &, WIPF, 1 W ---WIPF,,

o G3:
(1,1,1)
(1,1,2) (1,2,1) (2,1,1)
(1,2,2) (2,1,2) (2,2,1)
(1,1,3) (1,3,1) (3,1,1)
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)



@ for simplicity:
P, = {f € PF, | k¢ f, butlefforalll >k}

o it follows: PF, = &, WIPF, 1 W ---WIPF,,

Proposition (M. Bruce, M. Dougherty, M. Hlavacek,

R. Kudo & I. Nicolas, 2016)
Forn > 0and k € [n], the cardinality of PF,, y is




@ for simplicity:
P, = {f € PF, | k¢ f, butlefforalll >k}

o it follows: PF, = &, WIPF, 1 W ---WIPF,,

Proposition (M. Bruce, M. Dougherty, M. Hlavacek,

R. Kudo & I. Nicolas, 2016)
Forn > 0and k € [n], the cardinality of PF,, y is

Z_!!<(k F1k1 - k"‘1>.
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