Two Posets o Noncrossing Partitions

Henri Mühl ϵ

Noncrossin Partitions

A Subposet of Noncrossing Partitions

Two Posets of Noncrossing Partitions

Henri Mühle

Institut für Algebra, TU Dresden

August 28, 2017 Eurocomb, Vienna

Outline

Two Posets or Noncrossing Partitions

Henri Mühle

Noncrossin_i Partitions

A Subposet of Noncrossing Partitions Noncrossing Partitions

2 A Subposet of Noncrossing Partitions

Outline

Two Posets o. Noncrossing Partitions

Noncrossing

A Subposet o Noncrossing Partitions Noncrossing Partitions

A Subposet of Noncrossing Partitions

Iwo Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

Noncrossing Partitions

• noncrossing partition

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossin Partitions

Noncrossing Partitions

noncrossing partition

$$\rightsquigarrow NC_n$$

$$\Big\{\{1,6,7\},\{2,8,14,15\},\{3,4,5\},\{9,10,12,13\},\{11\},\{16\}\Big\}$$

Two Posets of Noncrossing Partitions

Noncrossin

A Subposet of Noncrossing Partitions • noncrossing partition

 $\{\{1,6,7\},\{2,8,14,15\},\{3,4,5\},\{9,10,12,13\},\{11\},\{16\}\}$

Two Posets of Noncrossing Partitions

Noncrossin

Partitions
A Subposet

Noncrossing Partitions

• noncrossing partition

 $\{\{1,6,7\},\{2,8,14,15\},\{3,4,5\},\{9,10,12,13\},\{11\},\{16\}\}$

Two Posets of Noncrossing Partitions

Noncrossin Partitions

Noncrossing Partitions • noncrossing partition

 $\{1,2,6,7,8,14,15\},\{3,4,5\},\{9,10,12,13\},\{11\},\{16\}\}$

First Properties

Two Posets of Noncrossing Partitions

Noncrossin_i Partitions

A Subposet of Noncrossing Partitions

Theorem (G. Kreweras, 1972)

For $n \ge 0$, the cardinality of NC_n is

$$Cat(n) = \frac{1}{n+1} \binom{2n}{n}.$$

Two Posets of Noncrossing Partitions

Noncrossing

A Subposet

Noncrossing Partitions • dual refinement order

 $\{\{1,2,6,7,8,14,15\},\{3,4,5\},\{9,10,12,13\},\{11\},\{16\}\}$

Two Posets of Noncrossing Partitions

Noncrossin Partitions

A Subposet of Noncrossing Partitions • dual refinement order

 $\{1,2,6,7,8,14,15\},\{3,4,5\},\{9,10,12,13\},\{11\},\{16\}\}$

Two Posets of Noncrossing Partitions

Noncrossin Partitions

A Subposet of Noncrossing Partitions

• dual refinement order

 $\{\{1,2,3,4,5,6,7,8,14,15\},\{9,10,12,13\},\{11\},\{16\}\}$

First Properties

Two Posets of Noncrossing Partitions

Noncrossing Partitions

A Subposet of Noncrossing Partitions

•
$$\mathcal{NC}_n = (\mathcal{NC}_n, \leq_{\mathrm{dref}})$$

• let
$$0 = 1|2| \cdots |n \text{ and } 1 = 12 \cdots n$$

• let
$$[n] = \{1, 2, ..., n\}$$

Theorem (G. Kreweras, 1972)

For $n \geq 0$, the poset \mathcal{NC}_n is a lattice.

Example: \mathcal{NC}_4

Two Posets of Noncrossing Partitions

. . .

Noncrossing Partitions

A Subposet of Noncrossing Partitions

Iwo Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions

- **supersolvable**: lattice \mathcal{P} together with a maximal chain D of \mathcal{P} such that D together with any other chain of \mathcal{P} generates a distributive sublattice of \mathcal{P}
- *M*-chain: the chain *D* above

Iwo Posets of Noncrossing Partitions

Henri Mühle

Noncrossin; Partitions

A Subposet of Noncrossing Partitions

- **supersolvable**: lattice \mathcal{P} together with a maximal chain D of \mathcal{P} such that D together with any other chain of \mathcal{P} generates a distributive sublattice of \mathcal{P}
- *M*-chain: the chain *D* above

Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions

- **supersolvable**: lattice \mathcal{P} together with a maximal chain D of \mathcal{P} such that D together with any other chain of \mathcal{P} generates a distributive sublattice of \mathcal{P}
- *M*-chain: the chain *D* above

Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions

- supersolvable: lattice P together with a maximal chain D of P such that D together with any other chain of P generates a distributive sublattice of P
- *M*-chain: the chain *D* above

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossin Partitions

A Subposet of Noncrossing Partitions

- **supersolvable**: lattice \mathcal{P} together with a maximal chain D of \mathcal{P} such that D together with any other chain of \mathcal{P} generates a distributive sublattice of \mathcal{P}
- *M*-chain: the chain *D* above

Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions

- **supersolvable**: lattice \mathcal{P} together with a maximal chain D of \mathcal{P} such that D together with any other chain of \mathcal{P} generates a distributive sublattice of \mathcal{P}
- *M*-chain: the chain *D* above

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions

- **supersolvable**: lattice \mathcal{P} together with a maximal chain D of \mathcal{P} such that D together with any other chain of \mathcal{P} generates a distributive sublattice of \mathcal{P}
- *M*-chain: the chain *D* above

Theorem (P. Hersh, 1999)

For $n \geq 1$, the lattice \mathcal{NC}_n is supersolvable.

Noncrossing Partitions

Noncrossing

A Subposet of Noncrossing Partitions

- **supersolvable**: lattice \mathcal{P} together with a maximal chain D of \mathcal{P} such that D together with any other chain of \mathcal{P} generates a distributive sublattice of \mathcal{P}
- *M*-chain: the chain *D* above
- \mathbf{x}_i .. noncrossing partition with only non-singleton block $[i-1] \cup \{n\}$

Two Posets of Noncrossing Partitions

Henri Mühl

Noncrossing Partitions

A Subposet of Noncrossing Partitions

- **supersolvable**: lattice \mathcal{P} together with a maximal chain D of \mathcal{P} such that D together with any other chain of \mathcal{P} generates a distributive sublattice of \mathcal{P}
- *M*-chain: the chain *D* above
- x_i .. noncrossing partition with only non-singleton block $[i-1] \cup \{n\}$

Proposition (%, 2017)

For $n \geq 1$, the chain $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is an M-chain of \mathcal{NC}_n .

• $\mathcal{P} = (P, \leq)$.. a (finite) poset

• Möbius function: the map
$$\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$$
 defined by
$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

• $\mathcal{P} = (P, \leq)$.. a (finite) poset

• Möbius function: the map
$$\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$$
 defined by
$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

•
$$\mathcal{P} = (P, <)$$
 .. a (finite) poset

• Möbius function: the map
$$\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$$
 defined by
$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{c|c}
\hat{1} \\
a & b & c \\
\downarrow & & \\
\hat{0} \\
-\mu_{\mathcal{P}}(\hat{0}, \hat{1}) = \mu_{\mathcal{P}}(\hat{0}, \hat{0}) + \mu_{\mathcal{P}}(\hat{0}, a) + \mu_{\mathcal{P}}(\hat{0}, b) + \mu_{\mathcal{P}}(\hat{0}, c)
\end{array}$$

•
$$\mathcal{P} = (P, <)$$
 .. a (finite) poset

• Möbius function: the map
$$\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$$
 defined by
$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{c|c}
\hat{1} \\
a & b & c \\
\downarrow & & \\
-\mu_{\mathcal{P}}(\hat{0}, \hat{1}) = \mu_{\mathcal{P}}(\hat{0}, \hat{0}) - \mu_{\mathcal{P}}(\hat{0}, \hat{0}) + \mu_{\mathcal{P}}(\hat{0}, b) + \mu_{\mathcal{P}}(\hat{0}, c)
\end{array}$$

P = (P, <) .. a (finite) poset

• Möbius function: the map
$$\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$$
 defined by
$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{c|c}
\hat{1} \\
b \\
c \\
\downarrow \\
-\mu_{\mathcal{P}}(\hat{0}, \hat{1}) = \mu_{\mathcal{P}}(\hat{0}, \hat{0}) - \mu_{\mathcal{P}}(\hat{0}, \hat{0}) - \mu_{\mathcal{P}}(\hat{0}, \hat{0}) + \mu_{\mathcal{P}}(\hat{0}, c)
\end{array}$$

•
$$\mathcal{P} = (P, <)$$
 .. a (finite) poset

• Möbius function: the map
$$\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$$
 defined by
$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{c|c}
\hat{1} \\
a & b \\
b & c \\
\hline
& \hat{0} \\
-\mu_{\mathcal{P}}(\hat{0}, \hat{1}) = \mu_{\mathcal{P}}(\hat{0}, \hat{0}) - \mu_{\mathcal{P}}(\hat{0}, \hat{0}) - \mu_{\mathcal{P}}(\hat{0}, \hat{0}) - \mu_{\mathcal{P}}(\hat{0}, \hat{0})
\end{array}$$

P = (P, <) .. a (finite) poset

• Möbius function: the map $\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$ defined by $\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$

•
$$\mathcal{P} = (P, \leq)$$
 .. a (finite) poset

• Möbius function: the map
$$\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$$
 defined by
$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

•
$$\mathcal{P} = (P, \leq)$$
 .. a (finite) poset

• Möbius function: the map
$$\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$$
 defined by
$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

• $\mathcal{P} = (P, \leq)$.. a (finite) poset

• Möbius function: the map
$$\mu_{\mathcal{P}}: P \times P \to \mathbb{Z}$$
 defined by
$$\mu_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum\limits_{x \leq z < y} \mu_{\mathcal{P}}(x,z), & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

Theorem (G. Kreweras, 1972)

For n > 1 we have

$$\mu_{\mathcal{NC}_n}(\mathbf{0},\mathbf{1}) = (-1)^{n-1} \operatorname{Cat}(n-1).$$

NBB-Bases of \mathcal{NC}_n

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions • $\mathbf{a}_{i,j}$.. noncrossing partition with only non-singleton block $\{i,j\}$

- $A_n = \{ \mathbf{a}_{i,j} \mid 1 \le i < j \le n \}$
- let \leq be any partial order on A_n ; $X \subseteq A_n$

NBB-Bases of \mathcal{NC}_n

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossina Partitions

A Subposet o Noncrossing Partitions • **bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$

NBB-Bases of \mathcal{NC}_n

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossin_t Partitions

A Subposet o Noncrossing Partitions **♦ bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossin_t Partitions

A Subposet o Noncrossing Partitions • **bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing

A Subposet o Noncrossing Partitions **♦ bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing

- **bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$
- NBB: no nonempty subset of *X* is BB

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing

- **bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$
- NBB: no nonempty subset of *X* is BB

Noncrossing Partitions

Henri Mühle

Noncrossing

- **bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$
- **NBB**: no nonempty subset of *X* is BB

Iwo Posets of Noncrossing Partitions

Henri Mühle

Noncrossing

- **bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$
- NBB: no nonempty subset of *X* is BB

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

Noncrossing Partitions

- **bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$
- **NBB**: no nonempty subset of *X* is BB
- NBB-base for **x**: *X* is NBB and $\bigvee X = \mathbf{x}$

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet on Noncrossing Partitions

- **bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$
- **NBB**: no nonempty subset of *X* is BB
- NBB-base for **x**: *X* is NBB and $\bigvee X = \mathbf{x}$

Theorem (A. Blass, B. Sagan, 1997)

Let $\mathcal{P} = (P, \leq)$ be a finite lattice and \leq any partial order on the atoms of \mathcal{P} . For $x \in P$ we have

$$\mu_{\mathcal{P}}(\hat{0}, x) = \sum_{X} (-1)^{|X|},$$

where the sum runs over the NBB-bases for x.

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing

A Subposet of Noncrossing Partitions

- **bounded below**: for every $\mathbf{x} \in X$ there is $\mathbf{a} \in \mathcal{A}_n$ such that $\mathbf{a} \triangleleft \mathbf{x}$ and $\mathbf{a} <_{\text{dref}} \bigvee X$
- **NBB**: no nonempty subset of *X* is BB
- NBB-base for x: X is NBB and $\bigvee X = x$

Corollary (The Crosscut Theorem; G.-C. Rota, 1964)

Let $\mathcal{P} = (P, \leq)$ be a finite lattice. For $x \in P$ we have

$$\mu_{\mathcal{P}}(\hat{0}, x) = \sum_{X} (-1)^{|X|},$$

where the sum runs over all subsets of atoms of P whose join is x.

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossin Partitions

A Subposet o Noncrossing Partitions ullet subsets of A_n correspond to certain graphs on [n]

$$\{a_{1,4}, a_{2,3}, a_{2,4}\} \quad \leftrightarrow \quad 1 \qquad 2 \qquad 3 \qquad 4$$

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

- let $\{x_1, x_2, ..., x_n\}$ be the *M*-chain from before
- let $A_i = \{ \mathbf{a} \in \mathcal{A}_n \mid \mathbf{a} \not\leq_{\mathrm{dref}} \mathbf{x}_i \text{ and } \mathbf{a} \leq_{\mathrm{dref}} \mathbf{x}_{i+1} \}$

Two Posets of Noncrossing Partitions

Noncrossing Partitions

- let $\{x_1, x_2, ..., x_n\}$ be the *M*-chain from before
- let $A_i = \{ \mathbf{a} \in \mathcal{A}_n \mid \mathbf{a} \not\leq_{\mathrm{dref}} \mathbf{x}_i \text{ and } \mathbf{a} \leq_{\mathrm{dref}} \mathbf{x}_{i+1} \}$
- let $\mathbf{a} \leq \mathbf{a}'$ if and only if $\mathbf{a} \in A_i$, $\mathbf{a}' \in A_j$ and $i \leq j$

Two Posets of Noncrossing Partitions

Noncrossing Partitions

A Subposet of Noncrossing Partitions • let $\{x_1, x_2, \dots, x_n\}$ be the *M*-chain from before

- let $A_i = \{ \mathbf{a} \in \mathcal{A}_n \mid \mathbf{a} \not\leq_{\mathrm{dref}} \mathbf{x}_i \text{ and } \mathbf{a} \leq_{\mathrm{dref}} \mathbf{x}_{i+1} \}$
- let $\mathbf{a} \leq \mathbf{a}'$ if and only if $\mathbf{a} \in A_i$, $\mathbf{a}' \in A_j$ and $i \leq j$

Two Posets o Noncrossing Partitions

Noncrossing

A Subposet of Noncrossing

- let $\{x_1, x_2, \dots, x_n\}$ be the *M*-chain from before
- let $A_i = \{ \mathbf{a} \in \mathcal{A}_n \mid \mathbf{a} \not\leq_{\mathrm{dref}} \mathbf{x}_i \text{ and } \mathbf{a} \leq_{\mathrm{dref}} \mathbf{x}_{i+1} \}$
- let $\mathbf{a} \leq \mathbf{a}'$ if and only if $\mathbf{a} \in A_i$, $\mathbf{a}' \in A_j$ and $i \leq j$

Proposition (%, 2017)

For $n \ge 1$ the NBB-bases for 1 in \mathcal{NC}_n are precisely those maximal chains of $(\mathcal{A}_n, \le]$, whose associated graph is a noncrossing tree with an edge between 1 and n such that the removal of this edge yields two trees on vertices [k] and $\{k+1,k+2,\ldots,n\}$ for some $k \in [n-1]$.

Two Posets o Noncrossing Partitions

Noncrossing Partitions

A Subposet of Noncrossing Partitions

- let $\{x_1, x_2, \dots, x_n\}$ be the *M*-chain from before
- let $A_i = \{ \mathbf{a} \in \mathcal{A}_n \mid \mathbf{a} \not\leq_{\mathrm{dref}} \mathbf{x}_i \text{ and } \mathbf{a} \leq_{\mathrm{dref}} \mathbf{x}_{i+1} \}$
- let $\mathbf{a} \leq \mathbf{a}'$ if and only if $\mathbf{a} \in A_i$, $\mathbf{a}' \in A_j$ and $i \leq j$

Corollary

For $n \geq 1$ we have

$$\mu_{\mathcal{NC}_n}(\mathbf{0},\mathbf{1}) = (-1)^{n-1} \operatorname{Cat}(n-1).$$

Example: NBB-Bases for 1 in \mathcal{NC}_5

Two Posets of Noncrossing Partitions

Ienri Mühle

Noncrossing Partitions

Example: NBB-Bases for 1 in \mathcal{NC}_5

 $\{a_{1.5}, a_{1.2}, a_{1.3}, a_{1.4}\}$ $\{a_{1.5}, a_{1.2}, a_{1.3}, a_{2.4}\}$ $\{a_{1.5}, a_{1.2}, a_{1.3}, a_{3.4}\}$ $\{a_{1.5}, a_{1.2}, a_{1.3}, a_{4.5}\}$

 $\{a_{1,5}, a_{1,2}, a_{2,3}, a_{1,4}\}$ $\{a_{1,5}, a_{1,2}, a_{2,3}, a_{2,4}\}$ $\{a_{1,5}, a_{1,2}, a_{2,3}, a_{3,4}\}$ $\{a_{1,5}, a_{1,2}, a_{2,3}, a_{4,5}\}$

 $\{a_{1.5}, a_{1.2}, a_{3.5}, a_{1.4}\} \quad \{a_{1.5}, a_{1.2}, a_{3.5}, a_{2.4}\} \quad \{a_{1.5}, a_{1.2}, a_{3.5}, a_{3.4}\} \quad \{a_{1.5}, a_{1.2}, a_{3.5}, a_{4.5}\}$

 $\{a_{1,5}, a_{2,5}, a_{3,5}, a_{1,4}\}$ $\{a_{1,5}, a_{2,5}, a_{3,5}, a_{2,4}\}$ $\{a_{1,5}, a_{2,5}, a_{3,5}, a_{3,5}, a_{3,4}\}$ $\{a_{1,5}, a_{2,5}, a_{3,5}, a_{4,5}\}$

 $\{a_{1.5}, a_{2.5}, a_{2.3}, a_{1.4}\}$ $\{a_{1.5}, a_{2.5}, a_{2.3}, a_{2.4}\}$ $\{a_{1.5}, a_{2.5}, a_{2.3}, a_{3.4}\}$ $\{a_{1.5}, a_{2.5}, a_{2.3}, a_{4.5}\}$

 $\{a_{1.5}, a_{2.5}, a_{1.3}, a_{1.4}\}$ $\{a_{1.5}, a_{2.5}, a_{1.3}, a_{2.4}\}$ $\{a_{1.5}, a_{2.5}, a_{1.3}, a_{3.4}\}$ $\{a_{1.5}, a_{2.5}, a_{1.3}, a_{4.5}\}$

Example: NBB-Bases for 1 in $\mathcal{N}\mathcal{C}_5$

Two Posets Noncrossin Partitions

11011111111111

Noncrossin Partitions

Noncrossing Partitions

Example: NBB-Bases for 1 in \mathcal{NC}_5

Two Posets of Noncrossing Partitions

Noncrossing Partitions

Noncrossing Partitions

Example: NBB-Bases for 1 in \mathcal{NC}_5

Two Posets o Noncrossing Partitions

Noncrossing Partitions

Outline

Two Posets of Noncrossing Partitions

Noncrossing

A Subposet of Noncrossing Partitions Noncrossing Partitions

Two Posets o Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions • for $\mathbf{x} \in NC_n$ write $i \sim_{\mathbf{x}} j$ if $\{i, j\} \subseteq B \in \mathbf{x}$

Two Posets of Noncrossing Partitions

Noncrossing Partitions

- for $\mathbf{x} \in NC_n$ write $i \sim_{\mathbf{x}} j$ if $\{i, j\} \subseteq B \in \mathbf{x}$
- incidence pattern: $(i,j) \in X \subseteq [n] \times [n]$
- block pattern: $Y \in \mathcal{Y} \subseteq \wp([n])$
- for $Z_n \subseteq NC_n$ define

$$Z_n[X; \mathcal{Y}] = \left\{ \mathbf{x} \in Z_n \mid i \sim_{\mathbf{x}} j \text{ for } (i, j) \in X, \right.$$

and $B \in \mathbf{x}$ for $B \in \mathcal{Y} \right\}$

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing.

A Subposet of Noncrossing Partitions

Idea

For
$$X_1, X_2, ..., X_s \subseteq [n] \times [n]$$
 and $\mathcal{Y}_1, \mathcal{Y}_2, ..., \mathcal{Y}_s \subseteq \wp([n])$ let
$$\mathbb{P}_n = \bigcup_{i=1}^s NC_n[X_s; \mathcal{Y}_s].$$

Study the poset $(NC_n \setminus \mathbb{P}_n, \leq_{dref})$ of noncrossing partitions avoiding the "patterns" \mathbb{P}_n .

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions

Idea

For
$$X_1, X_2, ..., X_s \subseteq [n] \times [n]$$
 and $\mathcal{Y}_1, \mathcal{Y}_2, ..., \mathcal{Y}_s \subseteq \wp([n])$ let
$$\mathbb{P}_n = \bigcup_{i=1}^s NC_n[X_s; \mathcal{Y}_s].$$

Study the poset $(NC_n \setminus \mathbb{P}_n, \leq_{dref})$ of noncrossing partitions avoiding the "patterns" \mathbb{P}_n .

- easy examples
 - $NC_n[\emptyset; \{B\}] \cong \prod_{i=1}^s NC_{n_i}$, where the n_i depend on B
 - $\bullet \ \mathit{NC}_n\big[\{(i,j)\};\varnothing\big] = \{x \in \mathit{NC}_n \mid a_{i,j} \leq_{\mathrm{dref}} x\}$

Another Example

Two Posets of Noncrossing Partitions

A Subposet of Noncrossing • consider the following patterns:

• let
$$X_1 = \emptyset$$
, $\mathcal{Y}_1 = \{ \{n-1, n\} \}$

• let
$$X_2 = \{(1, n-1)\}, \mathcal{Y}_2 = \{\{n\}\}$$

• straightforward:

•
$$\left| NC_n[X_1; \mathcal{Y}_1] \right| = Cat(n-2) = \left| NC_n[X_2; \mathcal{Y}_2] \right|$$

• define
$$PE_n = NC_n \setminus \left(NC_n[X_1; \mathcal{Y}_1] \cup NC_n[X_2; \mathcal{Y}_2]\right)$$

• let
$$PE_n = (PE_n, \leq_{dref})$$

Two Posets of Noncrossing Partitions

Noncrossing Partitions

$$NC_4[\emptyset; \{\{3,4\}\}]$$

$$NC_4[\{(1,3)\};\{4\}]$$

$$N\!C_4\!\left[\varnothing;\big\{\{3,4\}\big\}\right]$$

$$NC_4[\{(1,3)\};\{4\}]$$

$$NC_4 \left[\emptyset; \left\{ \left\{ 3,4 \right\} \right\} \right]$$

$$NC_4[\{(1,3)\};\{4\}]$$

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

Properties of PE_n

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions

$$|PE_n| = Cat(n) - 2 Cat(n-2)$$

Lemma (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, I. Nicolas, 2016)

We have $|PE_3| = 3$ and for $n \ge 4$ we have

$$\left| PE_n \right| = \left(\frac{5}{n+1} + \frac{9}{n-3} \right) \binom{2n-4}{n-4}.$$

Properties of \mathcal{PE}_n

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions • recall: x_i has non-singleton block $[i-1] \cup \{n\}$

Theorem (**, 2017)

For $n \geq 3$, the poset \mathcal{PE}_n is a supersolvable lattice with M-chain $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$.

Properties of \mathcal{PE}_n

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions

- NBB-bases for 1 in \mathcal{PE}_n are NBB-bases for 1 in \mathcal{NC}_n
- let $\bar{\mathcal{A}}_n = \mathcal{A}_n \setminus \{\mathbf{a}_{1,n-1}, \mathbf{a}_{n-1,n}\}$

Proposition (**, 2017)

For $n \geq 3$ the NBB-bases for 1 in \mathcal{PE}_n are precisely those maximal chains of $(\bar{\mathcal{A}}_n, \leq)$, whose associated graph is a noncrossing tree with an edge between 1 and n such that the removal of this edge yields two trees on vertices [k] and $\{k+1,k+2,\ldots,n\}$ for some $k \in [n-2]$.

Properties of PE_n

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions

- NBB-bases for 1 in \mathcal{PE}_n are NBB-bases for 1 in \mathcal{NC}_n
- let $\bar{\mathcal{A}}_n = \mathcal{A}_n \setminus \{\mathbf{a}_{1,n-1}, \mathbf{a}_{n-1,n}\}$

Proposition (**, 2017)

For $n \geq 3$ the NBB-bases for 1 in \mathcal{PE}_n are precisely those maximal chains of $(\bar{\mathcal{A}}_n, \leq)$, whose associated graph is a noncrossing tree with an edge between 1 and n such that the removal of this edge yields two trees on vertices [k] and $\{k+1,k+2,\ldots,n\}$ for some $k \in [n-2]$.

Example: NBB-Bases for 1 in \mathcal{PE}_5

Two Posets o Noncrossing Partitions

Noncrossing

Two Posets o Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

$$\left\{ a_{1,5}, a_{1,2}, a_{1,3}, a_{2,4} \right\} \quad \left\{ a_{1,5}, a_{1,2}, a_{1,3}, a_{3,4} \right\}$$

$$\left\{ a_{1,5}, a_{1,2}, a_{2,3}, a_{2,4} \right\} \quad \left\{ a_{1,5}, a_{1,2}, a_{2,3}, a_{3,4} \right\}$$

$$\left\{ a_{1,5}, a_{1,2}, a_{3,5}, a_{2,4} \right\} \quad \left\{ a_{1,5}, a_{2,5}, a_{1,3}, a_{3,4} \right\}$$

$$\left\{ a_{1,5}, a_{2,5}, a_{2,3}, a_{2,4} \right\} \quad \left\{ a_{1,5}, a_{2,5}, a_{2,3}, a_{3,4} \right\}$$

$$\left\{ a_{1,5}, a_{2,5}, a_{2,3}, a_{2,4} \right\} \quad \left\{ a_{1,5}, a_{2,5}, a_{2,5}, a_{3,5}, a_{3,4} \right\}$$

$$\left\{ a_{1,5}, a_{2,5}, a_{3,5}, a_{2,4} \right\} \quad \left\{ a_{1,5}, a_{2,5}, a_{3,5}, a_{3,4} \right\}$$

Two Posets o Noncrossing Partitions

Noncrossing

Two Posets o Noncrossing Partitions

Henri Mühl

Noncrossing Partitions

Two Posets of Noncrossing Partitions

Henri Mühl

Noncrossing Partitions

Two Posets of Noncrossing Partitions

Heim Mume

Noncrossing Partitions

Properties of \mathcal{PE}_n

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions • NBB-bases for 1 in \mathcal{PE}_n are NBB-bases for 1 in \mathcal{NC}_n

Theorem (**, 2017)

For $n \geq 3$, we have

$$\mu_{\mathcal{PE}_n}(\mathbf{0},\mathbf{1}) = (-1)^{n-1} \left(\operatorname{Cat}(n-1) - 2\operatorname{Cat}(n-2) \right).$$

Properties of \mathcal{PE}_n

Two Posets of Noncrossing Partitions

Henri Mühle

Noncrossing Partitions

A Subposet of Noncrossing Partitions • NBB-bases for 1 in \mathcal{PE}_n are NBB-bases for 1 in \mathcal{NC}_n

Theorem (**, 2017)

For $n \geq 3$, we have

$$\mu_{\mathcal{PE}_n}(\mathbf{0}, \mathbf{1}) = (-1)^{n-1} \frac{4}{n} \binom{2n-5}{n-4}.$$

Two Posets o Noncrossing Partitions

Henri Mühle

Noncrossin; Partitions

A Subposet o Noncrossing Partitions

Thank You.

Noncrossing Partitions

Henri Mühle

Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

Parking

•
$$[n] = \{1, 2, \ldots, n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

\bullet PF₃:

```
(1,1,1)
(1,1,2) (1,2,1) (2,1,1)
(1,2,2) (2,1,2) (2,2,1)
(1,1,3) (1,3,1) (3,1,1)
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)
```

Noncrossing Partitions

Tierni muni

- $[n] = \{1, 2, ..., n\}$
- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

rienti Munic

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

rieini winne

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Two Posets o Noncrossing Partitions

n . . .

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Two Posets of Noncrossing Partitions

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

De alciere

- $[n] = \{1, 2, ..., n\}$
- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Two Posets of Noncrossing Partitions

Parkino

- $[n] = \{1, 2, ..., n\}$
- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Noncrossing Partitions

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Two Posets of Noncrossing Partitions

rieimi ividine

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Two Posets of Noncrossing Partitions

Parkino

•
$$[n] = \{1, 2, ..., n\}$$

- parking function: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n

Counting Parking Functions

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions Theorem (Folklore)

For $n \ge 0$, the cardinality of \mathbb{PF}_n is $(n+1)^{n-1}$.

Counting Parking Functions

Two Posets of Noncrossing Partitions

Henri Müh

Theorem (Folklore)

For $n \ge 0$, the cardinality of \mathbb{PF}_n is $(n+1)^{n-1}$.

Proof (H. Pollack, 1974).

- arrange n + 1 parking spaces on a circle
- now all *n* cars can park
- $(n+1)^n$ possible assignments
- $\frac{1}{n+1}(n+1)^n$ rotation classes
- parking function: space n + 1 remains empty
- one parking function per rotation class

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions

• let
$$X = \{x_1, x_2, \dots, x_n\}, Y = \{y_1, y_2, \dots, y_n\}$$

• \mathfrak{S}_n acts diagonally on $\mathbb{Q}[X,Y]$ by

$$\sigma \cdot f(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n)$$

= $f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}, y_{\sigma(1)}, y_{\sigma(2)}, \dots, y_{\sigma(n)})$

• $\mathbb{Q}[X,Y]^{\mathfrak{S}_n}$ is generated by

$$p_{h,k}(X,Y) = \sum_{i=1}^{n} x_i^h y_i^k$$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • (bigraded) ring of diagonal coinvariants

$$DR_n = \mathbb{Q}[X,Y]/\langle p_{h,k}(X,Y) \mid h+k>0\rangle$$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • (bigraded) ring of diagonal coinvariants

$$DR_n = \mathbb{Q}[X,Y]/\langle p_{h,k}(X,Y) \mid h+k>0\rangle$$

Theorem (M. Haiman, 2001)

For n > 1 we have

$$\dim DR_n = (n+1)^{n-1}.$$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • (bigraded) Hilbert series

$$\mathcal{H}(DR_n;q,t) = \sum_{i,j\geq 0} t^i q^j \dim DR_n^{(i,j)}$$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • (bigraded) Hilbert series

$$\mathcal{H}(DR_n;q,t) = \sum_{i,j\geq 0} t^i q^j \dim DR_n^{(i,j)}$$

Conjecture (J. Haglund & N. Loehr, 2005)

For n > 1 we have

$$\mathcal{H}(DR_n;q,t) = \sum_{P \in \mathbb{PF}_n} q^{dinv(P)} t^{area(P)}.$$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • (bigraded) Frobenius series

$$\mathcal{F}(D\!R_n;q,t) = \sum_{i,j\geq 0} t^i q^j \sum_{\lambda \vdash n} \mathrm{mult}(\chi^{\lambda};D\!R_n^{(i,j)}) s_{\lambda}(X)$$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • (bigraded) Frobenius series

$$\mathcal{F}(DR_n;q,t) = \sum_{i,j\geq 0} t^i q^j \sum_{\lambda \vdash n} \mathrm{mult}(\chi^{\lambda}; DR_n^{(i,j)}) s_{\lambda}(X)$$

Conjecture (The Shuffle Conjecture; J. Haglund, M. Haiman, N. Loehr, J. Remmel & A. Ulyanov, 2005)

For $n \geq 1$ we have

$$\mathcal{F}(DR_n;q,t) = \sum_{P \in \mathbb{PF}_n} q^{dinv(P)} t^{area(P)} s_P(X).$$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions generalizations of the Shuffle Conjecture involve sums over parking functions with undesired spaces

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions

- \bullet $I \subseteq [n]$
- parking function avoiding $I: f \in \mathbb{PF}_n$ with $f \cap I = \emptyset$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions

$$\mathbb{PF}_{n,k} = \{ f \in \mathbb{PF}_n \mid k \notin f, \text{ but } l \in f \text{ for all } l > k \}$$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • for simplicity:

$$\mathbb{PF}_{n,k} = \{ f \in \mathbb{PF}_n \mid k \notin f, \text{ but } l \in f \text{ for all } l > k \}$$

• it follows: $\mathbb{PF}_n = \mathfrak{S}_n \uplus \mathbb{PF}_{n,1} \uplus \cdots \uplus \mathbb{PF}_{n,n}$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions

$$\mathbb{PF}_{n,k} = \{ f \in \mathbb{PF}_n \mid k \notin f, \text{ but } l \in f \text{ for all } l > k \}$$

- it follows: $\mathbb{PF}_n = \mathfrak{S}_n \uplus \mathbb{PF}_{n,1} \uplus \cdots \uplus \mathbb{PF}_{n,n}$
- PF₃:

$$(1,1,1)$$
 $(1,1,2)$ $(1,2,1)$ $(2,1,1)$
 $(1,2,2)$ $(2,1,2)$ $(2,2,1)$
 $(1,1,3)$ $(1,3,1)$ $(3,1,1)$
 $(1,2,3)$ $(1,3,2)$ $(2,1,3)$ $(2,3,1)$ $(3,1,2)$ $(3,2,1)$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions

$$\mathbb{PF}_{n,k} = \{ f \in \mathbb{PF}_n \mid k \notin f, \text{ but } l \in f \text{ for all } l > k \}$$

- it follows: $\mathbb{PF}_n = \mathfrak{S}_n \uplus \mathbb{PF}_{n,1} \uplus \cdots \uplus \mathbb{PF}_{n,n}$
- $\mathbb{PF}_{3,1}$:

```
(1,1,1)
(1,1,2) (1,2,1) (2,1,1)
(1,2,2) (2,1,2) (2,2,1)
(1,1,3) (1,3,1) (3,1,1)
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)
```

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions

$$\mathbb{PF}_{n,k} = \{ f \in \mathbb{PF}_n \mid k \notin f, \text{ but } l \in f \text{ for all } l > k \}$$

- it follows: $\mathbb{PF}_n = \mathfrak{S}_n \uplus \mathbb{PF}_{n,1} \uplus \cdots \uplus \mathbb{PF}_{n,n}$
- PF_{3,2}:

```
(1,1,1)
(1,1,2) (1,2,1) (2,1,1)
(1,2,2) (2,1,2) (2,2,1)
(1,1,3) (1,3,1) (3,1,1)
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)
```

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions

$$\mathbb{PF}_{n,k} = \{ f \in \mathbb{PF}_n \mid k \notin f, \text{ but } l \in f \text{ for all } l > k \}$$

- it follows: $\mathbb{PF}_n = \mathfrak{S}_n \uplus \mathbb{PF}_{n,1} \uplus \cdots \uplus \mathbb{PF}_{n,n}$
- \bullet PF_{3,3}:

$$(1,1,1)$$
 $(1,1,2)$ $(1,2,1)$ $(2,1,1)$
 $(1,2,2)$ $(2,1,2)$ $(2,2,1)$
 $(1,1,3)$ $(1,3,1)$ $(3,1,1)$
 $(1,2,3)$ $(1,3,2)$ $(2,1,3)$ $(2,3,1)$ $(3,1,2)$ $(3,2,1)$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • for simplicity:

$$\mathbb{PF}_{n,k} = \{ f \in \mathbb{PF}_n \mid k \notin f, \text{ but } l \in f \text{ for all } l > k \}$$

- it follows: $\mathbb{PF}_n = \mathfrak{S}_n \uplus \mathbb{PF}_{n,1} \uplus \cdots \uplus \mathbb{PF}_{n,n}$
- S₃:

(1,1,1)

$$(1,1,2)$$
 $(1,2,1)$ $(2,1,1)$ $(1,2,2)$ $(2,1,2)$ $(2,2,1)$ $(1,1,3)$ $(1,3,1)$ $(3,1,1)$ $(1,2,3)$ $(1,3,2)$ $(2,1,3)$ $(2,3,1)$ $(3,1,2)$ $(3,2,1)$

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • for simplicity:

$$\mathbb{PF}_{n,k} = \{ f \in \mathbb{PF}_n \mid k \notin f, \text{ but } l \in f \text{ for all } l > k \}$$

• it follows: $\mathbb{PF}_n = \mathfrak{S}_n \uplus \mathbb{PF}_{n,1} \uplus \cdots \uplus \mathbb{PF}_{n,n}$

Proposition (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo & I. Nicolas, 2016)

For $n \geq 0$ and $k \in [n]$, the cardinality of $\mathbb{PF}_{n,k}$ is

$$\frac{n!}{k!} | \mathbb{PF}_{k,k} |$$
.

Two Posets of Noncrossing Partitions

Henri Mühle

Parking Functions • for simplicity:

$$\mathbb{PF}_{n,k} = \{ f \in \mathbb{PF}_n \mid k \notin f, \text{ but } l \in f \text{ for all } l > k \}$$

• it follows: $\mathbb{PF}_n = \mathfrak{S}_n \uplus \mathbb{PF}_{n,1} \uplus \cdots \uplus \mathbb{PF}_{n,n}$

Proposition (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo & I. Nicolas, 2016)

For $n \geq 0$ and $k \in [n]$, the cardinality of $\mathbb{PF}_{n,k}$ is

$$\frac{n!}{k!} \Big((k+1)^{k-1} - k^{k-1} \Big).$$