CHARACTERIZATION 00000 Enumeration

CONTINUATION 0

PROPER MERGINGS OF STARS AND CHAINS ARE COUNTED BY SUMS OF ANTIDIAGONALS IN CERTAIN CONVOLUTION ARRAYS

Henri Mühle

Universität Wien

11th International Conference on Formal Concept Analysis May 23, 2013

Henri Mühle Proper Mergings of Stars and Chains 1 / 34

Characterization 00000

CONTINUATION O

OUTLINE

CHARACTERIZATION

3 Enumeration

• Proper Mergings of Antichains and Chains

• Proper Mergings of Stars and Chains

CONTINUATION

Characterization

CONTINUATION O

OUTLINE

CHARACTERIZATION

3 Enumeration

Proper Mergings of Antichains and Chains

Proper Mergings of Stars and Chains

CONTINUATION

- let (P, \leq_P) be a poset
- consider the elements of P as tasks
- for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- let (Q,\leq_Q) be another poset
 - How many different schedules exist such that (P, \leq_P) and (Q, \leq_Q) are executed "in parallel", no restrictions of (P, \leq_P) and (Q, \leq_Q) are violated or add no two tasks are executed at the same time?
- we call such a schedule a

- let (P, \leq_P) be a poset
- consider the elements of P as tasks
- for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - (P,\leq_P) and (Q,\leq_Q) are executed "in parallel",
 - \blacktriangleright no restrictions of (P,\leq_P) and (Q,\leq_Q) are violated or added
 - no two tasks are executed at the same time?
- we call such a schedule a

- let (P, \leq_P) be a poset
- consider the elements of P as tasks
- for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - ▶ (P, \leq_P) and (Q, \leq_Q) are executed "in parallel",
 - ${}^{\sim}$ no restrictions of (P,\leq_P) and (Q,\leq_Q) are violated or added
 - no two tasks are executed at the same time?
- we call such a schedule a

- let (P, \leq_P) be a poset
- consider the elements of P as tasks
- for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - ▶ (P, \leq_P) and (Q, \leq_Q) are executed "in parallel", and
 - ▶ no restrictions of (P, \leq_P) and (Q, \leq_Q) are violated or added?
 - no two tasks are executed at the same time?
- we call such a schedule a

- let (P, \leq_P) be a poset
- consider the elements of P as tasks
- for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - ▶ (P, \leq_P) and (Q, \leq_Q) are executed "in parallel", and
 - ▶ no restrictions of (P, \leq_P) and (Q, \leq_Q) are violated or added?
 - no two tasks are executed at the same time?
- ▶ we call such a schedule a merging of (P, \leq_P) and (Q, \leq_Q)

- ▶ let (P, \leq_P) be a poset
- consider the elements of P as tasks
- ▶ for $p, p' \in P$, consider $p <_P p'$ as saying that the execution of p has to be finished before the execution of p' can begin
- ▶ thus, (P, \leq_P) can be seen as a schedule, or an execution plan, and \leq_P can be seen as a set of restrictions
- ▶ let (Q, \leq_Q) be another poset
- How many different schedules exist such that
 - ▶ (P, \leq_P) and (Q, \leq_Q) are executed "in parallel",
 - no restrictions of (P,\leq_P) and (Q,\leq_Q) are violated or added,
 - no two tasks are executed at the same time?
- ▶ we call such a schedule a proper merging of (P, \leq_P) and (Q, \leq_Q)

CHARACTERIZATION 00000

CONTINUATION O

CHARACTERIZATION

CONTINUATION O

OUTLINE

MOTIVATION

CHARACTERIZATION

3 Enumeration

Proper Mergings of Antichains and Chains

Proper Mergings of Stars and Chains

CONTINUATION

CHARACTERIZATION •0000

CONTINUATION O

CHARACTERIZATION

- ▶ let (G, M, J), (G', M', J') be formal contexts
- ▶ intent of (G, M, J): a set $A^J = \{m \in M \mid a \ J \ m$ for all $a \in A\}$ for $A \subseteq G$
- extent of (G, M, J): a set $B^J = \{g \in G \mid g \ J \ b \text{ for all } b \in B\}$ for $B \subseteq M$
- ▶ bond between (G, M, J) and (G', M', J'): a binary relation $R \subseteq G \times M'$ such that for all $g \in G$, the row g^R is an intent of (G', M', J'), and for all $m \in M'$, the column m^R is an extent of (G, M, J)

CHARACTERIZATION 00000

8 / 34

	<i>p</i> ₁	<i>p</i> ₂	<i>p</i> 3	<i>p</i> ₄	<i>q</i> ₁	<i>q</i> ₂	<i>q</i> ₃	q_4	q_5	q_6
<i>P</i> ₁	×		×	\times						
P2		×	×	×						
P3			×	\times						
<i>P</i> 4				\times						
<i>q</i> ₁					×		×	×	×	×
<i>q</i> ₂						×		×		×
<i>q</i> ₃							×		×	×
<i>q</i> ₄								×		×
<i>q</i> 5									×	
96										\times

CHARACTERIZATION 00000

	<i>p</i> ₁	<i>p</i> ₂	<i>P</i> 3	<i>P</i> 4	<i>q</i> ₁	<i>q</i> ₂	<i>q</i> ₃	q_4	q_5	q_6
<i>p</i> ₁	×		×	×			×		×	×
<i>p</i> ₂		×	×	×				×		×
<i>p</i> 3			×	×						×
<i>p</i> ₄				\times						
q_1					×		×	×	×	×
<i>q</i> ₂						×		×		×
<i>q</i> ₃							×		×	×
<i>q</i> ₄								×		×
<i>q</i> 5									×	
96										×

CHARACTERIZATION 00000

	<i>p</i> ₁	<i>p</i> ₂	<i>P</i> 3	<i>P</i> 4	<i>q</i> ₁	<i>q</i> ₂	<i>q</i> ₃	q_4	q_5	q_6
<i>p</i> ₁	×		×	×			×		×	×
<i>p</i> ₂		×	×	×				×		×
<i>p</i> 3			×	×			×			×
<i>p</i> ₄				\times						
q_1					×		×	×	×	×
<i>q</i> ₂						×		×		×
<i>q</i> ₃							×		×	×
<i>q</i> ₄								×		×
<i>q</i> 5									×	
96										×

CHARACTERIZATION 00000

	<i>p</i> ₁	<i>p</i> ₂	<i>P</i> 3	<i>P</i> 4	<i>q</i> ₁	<i>q</i> ₂	<i>q</i> ₃	q_4	q_5	q_6
<i>p</i> ₁	×		×	×			×		×	×
<i>p</i> ₂		×	×	×			×	×	×	×
<i>p</i> 3			×	×			×		×	×
<i>p</i> ₄				\times						
q_1					×		×	×	×	×
<i>q</i> ₂						×		×		×
<i>q</i> ₃							×		×	×
<i>q</i> ₄								×		×
<i>q</i> 5									×	
96										×

CHARACTERIZATION 00000

CONTINUATION O

CHARACTERIZATION

- let (P, \leq_P) and (Q, \leq_Q) be disjoint posets, and let $R \subseteq P \times Q$, and $T \subseteq Q \times P$
- ▶ for $p, q \in P \cup Q$, define $p \leftarrow_{R,T} q$ if and only if

 $p \leq_P q$ or $p \leq_Q q$ or $(p,q) \in R$ or $(p,q) \in T$

- merging of (P, \leq_P) and (Q, \leq_Q) : a pair (R, T) such that $(P \cup Q, \leftarrow_{R,T})$ is a quasi-ordered set
- ▶ proper merging of (P, \leq_P) and (Q, \leq_Q) : a merging (R, T) such that $R \cap T^{-1} = \emptyset$

CHARACTERIZATION 00000

CONTINUATION O

CHARACTERIZATION

PROPOSITION (GANTER, MESCHKE, M., 2011)

Let (P, \leq_P) and (Q, \leq_Q) be disjoint posets, and let $R \subseteq P \times Q$ and $T \subseteq Q \times P$. The relation $\leftarrow_{R,T}$ is reflexive and transitive if and only if all of the following are satisfied:

- 1. *R* is a bond between $(P, P, \not\geq_P)$ and $(Q, Q, \not\geq_Q)$,
- 2. T is a bond between $(Q, Q, \not\geq_Q)$ and $(P, P, \not\geq_P)$,
- 3. $R \circ T$ is contained in \leq_P ,
- 4. $T \circ R$ is contained in \leq_Q .

Moreover, $\leftarrow_{R,T}$ is antisymmetric if and only if $R \cap T^{-1} = \emptyset$.

in other words, $(P \cup Q, \leftarrow_{R,T})$ is a poset if and only if (R, T) is a proper merging of (P, \leq_P) and (Q, \leq_Q)

CHARACTERIZATION 00000

CONTINUATION O

CHARACTERIZATION

PROPOSITION (GANTER, MESCHKE, M., 2011)

Let (P, \leq_P) and (Q, \leq_Q) be disjoint posets, and let $R \subseteq P \times Q$ and $T \subseteq Q \times P$. The relation $\leftarrow_{R,T}$ is reflexive and transitive if and only if all of the following are satisfied:

- 1. *R* is a bond between $(P, P, \not\geq_P)$ and $(Q, Q, \not\geq_Q)$,
- 2. T is a bond between $(Q, Q, \not\geq_Q)$ and $(P, P, \not\geq_P)$,
- 3. $R \circ T$ is contained in \leq_P ,
- 4. $T \circ R$ is contained in \leq_Q .

Moreover, $\leftarrow_{R,T}$ is antisymmetric if and only if $R \cap T^{-1} = \emptyset$.

▶ in other words, $(P \cup Q, \leftarrow_{R,T})$ is a poset if and only if (R, T) is a proper merging of (P, \leq_P) and (Q, \leq_Q)

CHARACTERIZATION 00000

CONTINUATION O

A LATTICE STRUCTURE

let $\mathfrak{M}_{P,Q}$ denote the set of (Q, \leq_Q)

mergings of (P, \leq_P) and

define a partial order via

 $(R, T) \preceq (R', T')$ if and only if $R \subseteq R'$ and $T \supseteq T'$,

CHARACTERIZATION 00000

Enumeration

CONTINUATION O

A LATTICE STRUCTURE

- ▶ let $\mathfrak{M}_{P,Q}^{\bullet}$ denote the set of proper mergings of (P, \leq_P) and (Q, \leq_Q)
- define a partial order via

 $(R, T) \preceq (R', T')$ if and only if $R \subseteq R'$ and $T \supseteq T'$,

CHARACTERIZATION 00000

CONTINUATION O

A LATTICE STRUCTURE

- ▶ let $\mathfrak{M}_{P,Q}^{\bullet}$ denote the set of proper mergings of (P, \leq_P) and (Q, \leq_Q)
- define a partial order via

 $(R, T) \preceq (R', T')$ if and only if $R \subseteq R'$ and $T \supseteq T'$,

THEOREM (GANTER, MESCHKE, M., 2011)

Let (P, \leq_P) and (Q, \leq_Q) be disjoint posets. The poset $(\mathfrak{M}_{P,Q}, \preceq)$ is in fact a distributive lattice, where the least element is $(\emptyset, P \times Q)$ and the greatest element is $(P \times Q, \emptyset)$. Moreover, $(\mathfrak{M}_{P,Q}^{\bullet}, \preceq)$ is a distributive sublattice of the previous.

Characterization

ENUMERATION

CONTINUATION O

OUTLINE

MOTIVATION

CHARACTERIZATION

O ENUMERATION

Proper Mergings of Antichains and Chains

Proper Mergings of Stars and Chains

CONTINUATION

Characterization 00000 CONTINUATION O

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ?
- the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

Characterization 00000 CONTINUATION O

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ? In general, no!
- the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

Characterization 00000 CONTINUATION O

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ? In general, no!
- ▶ the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

Characterization 00000 CONTINUATION O

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ? In general, no!
- ▶ the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

Characterization 00000 CONTINUATION O

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ? In general, no!
- ▶ the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

Characterization 00000 CONTINUATION O

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_P) and (Q, \leq_Q) ? In general, no!
- ▶ the number of (proper) mergings depends heavily on the structure of (P, \leq_P) and (Q, \leq_Q)

- we present the enumeration of two special cases:
 - 1. proper mergings of antichains and chains
 - 2. proper mergings of stars and chains

CHARACTERIZATION 00000 ENUMERATION •••••••••• CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

OUTLINE

MOTIVATION

D CHARACTERIZATION

3 Enumeration

• Proper Mergings of Antichains and Chains

Proper Mergings of Stars and Chains

CONTINUATION
MOTIVATION CHARACT 00 00000

CHARACTERIZATION

Enumeration

CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

PREPARATION

- let $C = \{c_1, c_2, \dots, c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j$
- we notice that $c_i \not\geq_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of (C, C, \geq_c) are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$ MOTIVATION C 00 C

CHARACTERIZATION 00000

 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

PREPARATION

- let $C = \{c_1, c_2, \dots, c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j \quad \rightsquigarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- we notice that $c_i \not\geq_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of (C, C, \geq_c) are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$ MOTIVATION CHARACTI 00 00000 Enumeration

CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

PREPARATION

- let $C = \{c_1, c_2, \dots, c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j \quad \rightsquigarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \ge_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of (C, C, \geq_c) are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

Enumeration

PROPER MERGINGS OF ANTICHAINS AND CHAINS

PREPARATION

- let $C = \{c_1, c_2, \ldots, c_n\}$ be a set and define $c_i \leq_c c_i$ if and only if $i \leq j \quad \rightsquigarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \geq_{c} c_j$ if and only if i < j, or equivalently $c_i <_{c} c_i$ for all $i, j \in \{1, 2, ..., n\}$

MOTIVATION CHARACTER 00 00000 Enumeration

CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

PREPARATION

- let $C = \{c_1, c_2, \dots, c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j \longrightarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \ge_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of $(C, C, \not\geq_c)$ are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$ MOTIVATION CHARACTER

ARACTERIZATION 000 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

PREPARATION

- let $C = \{c_1, c_2, \dots, c_n\}$ be a set and define $c_i \leq_{\mathfrak{c}} c_j$ if and only if $i \leq j \longrightarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \ge_c c_j$ if and only if i < j, or equivalently $c_i <_c c_j$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of $(C, C, \not\geq_c)$ are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, \ldots, n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

HENRI MÜHLE PROPER MERGINGS OF STARS AND CHAINS

Enumeration

PROPER MERGINGS OF ANTICHAINS AND CHAINS

PREPARATION

- let $C = \{c_1, c_2, \dots, c_n\}$ be a set and define $c_i \leq_c c_i$ if and only if $i < j \longrightarrow \mathfrak{c} = (C, \leq_{\mathfrak{c}})$ is a chain
- ▶ we notice that $c_i \geq_{c} c_i$ if and only if i < j, or equivalently $c_i <_{c} c_i$ for all $i, j \in \{1, 2, ..., n\}$

thus, the extents of (C, C, \geq_c) are of the form $\{c_1, c_2, \ldots, c_k\}$ for some $k \in \{0, 1, ..., n\}$ and the intents are of the form $\{c_k, c_{k+1}, \ldots, c_n\}$ for some $k \in \{1, 2, \ldots, n+1\}$

> HENRI MÜHLE Proper Mergings of Stars and Chains

thus, the extents and intents of (A, A, ≠_a) are precisely the subsets of A

a1 () a2 () a3 () a4 ()

a_1 ()	a_2 ()	a3 ()	a4 ()
- 0	- 0		

$=_{\mathfrak{a}}$	a ₁	a ₂	a ₃	a ₄
a ₁	×			
a2		×		
a3			×	
a ₄				×

$a_1 \bigcirc$	a2 ()	a3 ()	a4 ()
~	<u> </u>		

$=_{\mathfrak{a}}$	a ₁	a ₂	a3	a ₄
a ₁	×			
a ₂		×		
a3			×	
a ₄				×

≠a	a ₁	a ₂	a ₃	a4
a ₁		×	×	X
a ₂	×		×	×
a3	×	×		×
a4	×	×	×	

a_1 ()	a_2 ()	a3 ()	a4 ()
- 0	- 0	00	

$=_{\mathfrak{a}}$	a ₁	a ₂	ag	a ₄
a ₁	×			
a ₂		×		
a3			×	
a ₄				×

≠a	a ₁	a ₂	a ₃	a4
a ₁		×	×	X
a2	×		×	×
a3	×	×		×
a4	×	×	×	

CHARACTERIZATION 00000 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

THE IDEA

if (R, T) is a merging of a and c, then R must be right-justified and T must be top-justified

CHARACTERIZATION 00000 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

THE IDEA

if (R, T) is a proper merging of \mathfrak{a} and \mathfrak{c} , then R and T must "fit together"

CHARACTERIZATION 00000 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

THE IDEA

if (R, T) is a proper merging of \mathfrak{a} and \mathfrak{c} , then R and T must "fit together"

MOTIVATION CHARAC 00 00000

HARACTERIZATION

 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

THE BIJECTION

- complete bipartite digraph $\vec{K}_{m,n}$: a bipartite digraph with vertex set $V = V_1 \uplus V_2$, where $|V_1| = m$ and $|V_2| = n$, and edge set $\vec{E} = V_1 \times V_2$
- monotone coloring of a digraph: a map $\gamma: V \to \mathbb{N}$ with the property: if $(v_1, v_2) \in \vec{E}$, then $\gamma(v_1) \leq \gamma(v_2)$
- since a proper merging (R, T) of \mathfrak{a} and \mathfrak{c} , define a monotone (n+1)-coloring γ of $\vec{K}_{m,m}$ as follows:

 $\gamma(v_i) = k$ if and only if

$$\begin{cases} v_i \in V_1 & \text{and } a_i \ R \ c_j \\ & \text{for all } n+2-k \le j \le n \\ v_i \in V_2 & \text{and } c_j \ T \ a_i \\ & \text{for all } 1 \le j \le n+1-k \end{cases}$$

this is in fact a bijection!

Henri Mühle

PROPER MERGINGS OF STARS AND CHAINS 18 / 34

MOTIVATION CHARACT

HARACTERIZATION

 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

THE BIJECTION

- complete bipartite digraph $\vec{K}_{m,n}$: a bipartite digraph with vertex set $V = V_1 \uplus V_2$, where $|V_1| = m$ and $|V_2| = n$, and edge set $\vec{E} = V_1 \times V_2$
- monotone coloring of a digraph: a map $\gamma: V \to \mathbb{N}$ with the property: if $(v_1, v_2) \in \vec{E}$, then $\gamma(v_1) \leq \gamma(v_2)$
- since a proper merging (R, T) of \mathfrak{a} and \mathfrak{c} , define a monotone (n+1)-coloring γ of $\vec{K}_{m,m}$ as follows:

L

$$\gamma(v_i) = k \quad \text{if and only if} \quad \begin{cases} v_i \in V_1 & \text{and } a_i \ R \ c_j \\ & \text{for all } n+2-k \le j \le n \\ v_i \in V_2 & \text{and } c_j \ T \ a_i \\ & \text{for all } 1 \le i \le n+1-k \end{cases}$$

this is in fact a bijection!

Henri Mühle

MOTIVATION CHARACT 00 00000

CHARACTERIZATION

 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

THE BIJECTION

- complete bipartite digraph $\vec{K}_{m,n}$: a bipartite digraph with vertex set $V = V_1 \uplus V_2$, where $|V_1| = m$ and $|V_2| = n$, and edge set $\vec{E} = V_1 \times V_2$
- monotone coloring of a digraph: a map $\gamma: V \to \mathbb{N}$ with the property: if $(v_1, v_2) \in \vec{E}$, then $\gamma(v_1) \leq \gamma(v_2)$
- since a proper merging (R, T) of \mathfrak{a} and \mathfrak{c} , define a monotone (n+1)-coloring γ of $\vec{K}_{m,m}$ as follows:

$$\gamma(v_i) = k \quad \text{if and only if} \quad \begin{cases} v_i \in V_1 & \text{and } a_i \ R \ c_j \\ & \text{for all } n+2-k \le j \le n \\ v_i \in V_2 & \text{and } c_j \ T \ a_i \\ & \text{for all } 1 \le j \le n+1-k \end{cases}$$

this is in fact a bijection!

Henri Mühle

Proper Mergings of Stars and Chains 18 / 34

MOTIVATION 00 CHARACTERIZATION 00000 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

THE ENUMERATION

▶ the number of monotone *n*-colorings of \vec{K}_{m_1,m_2} is known

PROPOSITION (JOVOVIĆ & KILIBARDA, 2004)

Let $\kappa_n(\vec{K}_{m_1,m_2})$ denote the number of monotone n-colorings of \vec{K}_{m_1,m_2} . Then,

$$\kappa_n(ec{K}_{m_1,m_2}) = \sum_{k=1}^n \left((n+1-k)^{m_1} - (n-k)^{m_1}
ight) \cdot k^{m_2} \ = \sum_{k=1}^n \left((n+1-k)^{m_2} - (n-k)^{m_2}
ight) \cdot k^{m_1}.$$

MOTIVATION CHARACT 00 00000

CHARACTERIZATION

 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

THE ENUMERATION

 in view of the bijection from before, we obtain the following result

Theorem

The number $F_{\alpha}(m, n)$ of proper mergings of an m-antichain and an n-chain is given by

$$F_{\alpha}(m,n) = \kappa_{n+1}(\vec{K}_{m,m})$$

= $\sum_{k=1}^{n+1} ((n+2-k)^m - (n+1-k)^m) \cdot k^m$

we need to evaluate the term " 0^{0} " as zero, in order to cover the case m = 0 correctly MOTIVATION CHARACT 00 00000

CHARACTERIZATION

 CONTINUATION O

PROPER MERGINGS OF ANTICHAINS AND CHAINS

THE ENUMERATION

 in view of the bijection from before, we obtain the following result

Theorem

The number $F_{\alpha}(m, n)$ of proper mergings of an m-antichain and an n-chain is given by

$$egin{split} F_{\mathfrak{a}}(m,n) &= \kappa_{n+1}(ec{K}_{m,m}) \ &= \sum_{k=1}^{n+1} \Bigl((n+2-k)^m - (n+1-k)^m \Bigr) \cdot k^m \end{split}$$

we need to evaluate the term " 0^{0} " as zero, in order to cover the case m = 0 correctly

CHARACTERIZATION 00000

ENUMERATION

CONTINUATION O

PROPER MERGINGS OF STARS AND CHAINS

OUTLINE

MOTIVATION

CHARACTERIZATION

DENUMERATION

Proper Mergings of Antichains and Chains

• Proper Mergings of Stars and Chains

CONTINUATION

▶ let $S = \{s_0, s_1, ..., s_n\}$ be a set and define $s_i \leq_s s_j$ if and only if i = 0 or i = j

thus, the extents and of (S, S, ≱_s) are either Ø or s₀ ∪ B for some B ⊆ S \ {s₀}, and the intents are either S or some subset of S \ {s₀}

▶ let $S = \{s_0, s_1, ..., s_n\}$ be a set and define $s_i \leq_{\mathfrak{s}} s_j$ if and only if i = 0 or i = j $\rightsquigarrow \mathfrak{s} = (S, \leq_{\mathfrak{s}})$ is a star

thus, the extents and of (S, S, ≥_s) are either Ø or s₀ ∪ B for some B ⊆ S \ {s₀}, and the intents are either S or some subset of S \ {s₀}

▶ let
$$S = \{s_0, s_1, ..., s_n\}$$
 be a set and define $s_i \leq_s s_j$ if and only
if $i = 0$ or $i = j$ $\rightarrow \mathfrak{s} = (S, \leq_s)$ is a star

thus, the extents and of (S, S, ≥_s) are either Ø or s₀ ∪ B for some B ⊆ S \ {s₀}, and the intents are either S or some subset of S \ {s₀}

▶ let $S = \{s_0, s_1, ..., s_n\}$ be a set and define $s_i \leq_s s_j$ if and only if i = 0 or i = j $\rightarrow = (S, \leq_s)$ is a star

$\leq_{\mathfrak{s}}$	<i>s</i> 0	<i>s</i> ₁	<i>s</i> 2	<i>s</i> 3	<i>s</i> 4
<i>s</i> 0	×	×	×	×	×
<i>s</i> ₁		×			
<i>s</i> 2			×		
<i>s</i> 3				×	
<i>s</i> 4					×

thus, the extents and of $(S, S, \not\geq_s)$ are either \emptyset or $s_0 \cup B$ for some $B \subseteq S \setminus \{s_0\}$, and the intents are either S or some subset of $S \setminus \{s_0\}$

▶ let $S = \{s_0, s_1, ..., s_n\}$ be a set and define $s_i \leq_{\mathfrak{s}} s_j$ if and only if i = 0 or i = j $\rightsquigarrow \mathfrak{s} = (S, \leq_{\mathfrak{s}})$ is a star

$\leq_{\mathfrak{s}}$	<i>s</i> 0	<i>s</i> ₁	<i>s</i> 2	<i>s</i> 3	<i>s</i> 4
<i>s</i> 0	×	×	×	×	×
<i>s</i> 1		×			
<i>s</i> 2			×		
<i>s</i> 3				×	
<i>s</i> 4					×
<i>s</i> ₄					×

Ž₅	<i>s</i> 0	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	<i>s</i> 4
<i>s</i> 0		×	×	×	×
<i>s</i> ₁			×	×	×
<i>s</i> 2		×		×	×
<i>s</i> 3		×	×		×
<i>s</i> 4		×	×	×	

thus, the extents and of $(S, S, \not\geq_s)$ are either \emptyset or $s_0 \cup B$ for some $B \subseteq S \setminus \{s_0\}$, and the intents are either S or some subset of $S \setminus \{s_0\}$

▶ let $S = \{s_0, s_1, ..., s_n\}$ be a set and define $s_i \leq_{\mathfrak{s}} s_j$ if and only if i = 0 or i = j $\rightsquigarrow \mathfrak{s} = (S, \leq_{\mathfrak{s}})$ is a star

$\leq_{\mathfrak{s}}$	<i>s</i> 0	<i>s</i> ₁	<i>s</i> 2	<i>s</i> 3	<i>s</i> 4
<i>s</i> 0	×	×	×	×	×
<i>s</i> ₁		×			
<i>s</i> 2			×		
<i>s</i> 3				×	
<i>s</i> 4					×

Žs	<i>s</i> 0	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	<i>s</i> 4
<i>s</i> 0		×	×	×	×
<i>s</i> ₁			×	×	×
<i>s</i> 2		×		×	×
<i>s</i> 3		×	×		×
<i>s</i> 4		×	×	×	

thus, the extents and of (S, S, ≥_s) are either Ø or s₀ ∪ B for some B ⊆ S \ {s₀}, and the intents are either S or some subset of S \ {s₀} MOTIVATION 00 CHARACTERIZATION 00000

 CONTINUATION O

PROPER MERGINGS OF STARS AND CHAINS

The Idea

- the poset $(S \setminus \{s_0\}, \leq_{\mathfrak{s}})$ is an antichain
- we identify $A = S \setminus \{s_0\}$, and $\mathfrak{a} = (S \setminus \{s_0\}, \leq_{\mathfrak{s}})$
- if (R, T) is a proper merging of \mathfrak{s} and \mathfrak{c} , then $(\overline{R}, \overline{T})$, with $\overline{R} = R \cap (A \times C)$ and $\overline{T} = T \cap (C \times A)$, is a proper merging of \mathfrak{a} and \mathfrak{c}
- ▶ the map $\eta : \mathfrak{M}^{\bullet}_{\mathfrak{s},\mathfrak{c}} \to \mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}, (R, T) \mapsto (\overline{R}, \overline{T})$ is a surjective lattice homomorphism
- ▶ thus, the lattice $(\mathfrak{M}^{ullet}_{\mathfrak{a},\mathfrak{c}},\preceq)$ is a quotient lattice of $(\mathfrak{M}^{ullet}_{\mathfrak{s},\mathfrak{c}},\preceq)$
- idea: count the fibers of η and determine the cardinality of each fiber

 k_1 : minimal index such that a $R c_{k_1}$ for some $a \in A$

 k_1 : minimal index such that a $R c_{k_1}$ for some $a \in A$

 k_2 : maximal index such that c_{k_2} T a for some $a \in A$

 k_1 : minimal index such that a $R c_{k_1}$ for some $a \in A$

 k_2 : maximal index such that c_{k_2} T a for some $a \in A$

I: maximal index such that $c_l T a$ for all $a \in A$

 k_1 : minimal index such that a $R c_{k_1}$ for some $a \in A$

 k_2 : maximal index such that $c_{k_2} T$ a for some $a \in A$

I: maximal index such that $c_l T a$ for all $a \in A$

 $\rightsquigarrow l \leq k_2 < k_1$

 k_1 : minimal index such that a $R c_{k_1}$ for some $a \in A$

 k_2 : maximal index such that c_{k_2} T a for some $a \in A$

I: maximal index such that $c_l T a$ for all $a \in A$

 $\rightsquigarrow l \leq k_2 < k_1$

• decompose the set $\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}$ with respect to three parameters:

 k_1 : minimal index such that a $R c_{k_1}$ for some $a \in A$

 k_2 : maximal index such that c_{k_2} T a for some $a \in A$

I: maximal index such that $c_l T a$ for all $a \in A$

 $\rightsquigarrow l \leq k_2 < k_1$

• decompose the set $\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}$ with respect to three parameters:

 k_1 : minimal index such that a $R c_{k_1}$ for some $a \in A$

 k_2 : maximal index such that c_{k_2} T a for some $a \in A$

I: maximal index such that $c_l T a$ for all $a \in A$

 $\rightsquigarrow l \leq k_2 < k_1$

MOTIVATION CHARACTERIZATION 00 00000 PROPER MERGINGS OF STARS AND CHAINS CONTINUATION O

A DECOMPOSITION

- Fix k_1, k_2 , and l, and denote the set of all proper mergings of a and \mathfrak{c} which satisfy the previous constraints by $\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}(k_1, k_2, l)$
- ▶ let $V = V_1 \uplus V_2$ denote the vertex set of $\vec{K}_{m,m}$, let $F_{V_1}(m, n, k_1)$ resp. $F_{V_2}(m, k_2, l)$ denote the possibilities of coloring V_1 resp. V_2 (with respect to these constraints)
- we have

$$\left|\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}\right| = \sum \left|\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}(k_1,k_2,l)\right| = \sum F_{V_1}(m,n,k_1) \cdot F_{V_2}(m,k_2,l)$$

A DECOMPOSITION

- fix k₁, k₂, and l, and denote the set of all proper mergings of a and c which satisfy the previous constraints by M[•]_{a,c}(k₁, k₂, l)
- ▶ let $V = V_1 \uplus V_2$ denote the vertex set of $\vec{K}_{m,m}$, let $F_{V_1}(m, n, k_1)$ resp. $F_{V_2}(m, k_2, l)$ denote the possibilities of coloring V_1 resp. V_2 (with respect to these constraints)
- we have

$$\left|\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}\right| = \sum \left|\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}(k_1,k_2,l)\right| = \sum F_{V_1}(m,n,k_1) \cdot F_{V_2}(m,k_2,l)$$

Lemma

$$F_{V_1}(m, n, k_1) = (n + 2 - k_1)^m - (n + 1 - k_1)^m.$$

Fix k_1, k_2 , and l, and denote the set of all proper mergings of a

- and c which satisfy the previous constraints by M[•]_{a,c}(k₁, k₂, l)
 let V = V₁ ⊎ V₂ denote the vertex set of K[−]_{m,m}, let F_{V₁}(m, n, k₁) resp. F_{V₂}(m, k₂, l) denote the possibilities of
 - coloring V_1 resp. V_2 (with respect to these constraints)
- we have

A DECOMPOSITION

$$\left|\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}\right| = \sum \left|\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}(k_1,k_2,l)\right| = \sum F_{V_1}(m,n,k_1) \cdot F_{V_2}(m,k_2,l)$$

Lemma

$$F_{V_2}(m, k_2, l) = \begin{cases} 1, & \text{if } k_2 = l, \\ (k_2 - l + 1)^m - 2(k_2 - l)^m & \\ +(k_2 - l - 1)^m, & \text{otherwise.} \end{cases}$$

Motivation Characterization Enumeration Continuation ο ON 0000 OCCORDING OF Stars and Chains THE FIBERS OF η

 carefully counting the other possibilities yields the following result

Lemma

Let $(R, T) \in \mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}(k_1, k_2, l)$. Then,

$$|\eta^{-1}(R, T)| = k_1(l+1) - \binom{l+1}{2}.$$

▶ in view of the previous reasoning, we obtain the following

s ~

$$\begin{split} \mathfrak{M}_{\mathfrak{s},\mathfrak{c}}^{\bullet} \Big| &= \sum_{(R,T)\in\mathfrak{M}_{\mathfrak{a},\mathfrak{c}}^{\bullet}} |\eta^{-1}(R,T)| \\ &= \sum_{k_{1}=1}^{n+1} \sum_{k_{2}=0}^{k_{1}-1} \sum_{l=0}^{k_{2}} \sum_{(R,T)\in\mathfrak{M}_{\mathfrak{a},\mathfrak{c}}^{\bullet}(k_{1},k_{2},l)} |\eta^{-1}(R,T)| \\ &= \sum_{k_{1}=1}^{n+1} \sum_{k_{2}=0}^{k_{1}-1} \sum_{l=0}^{k_{2}} F_{V_{1}}(m,n,k_{1}) F_{V_{2}}(m,k_{2},l) \Big(k_{1}(l+1) - \binom{l+1}{2}\Big) \Big) \\ &= \sum_{k_{1}=1}^{n+1} F_{V_{1}}(m,n,k_{1}) \sum_{k_{2}=0}^{k_{1}-1} \sum_{l=0}^{k_{2}} F_{V_{2}}(m,k_{2},l) \Big(k_{1}(l+1) - \binom{l+1}{2}\Big) \Big) \end{split}$$

CHARACTERIZATION 00000 CONTINUATION O

PROPER MERGINGS OF STARS AND CHAINS

THE ENUMERATION

we finally obtain the result

Theorem

The number $F_{\alpha}(m, n)$ of proper mergings of an m-star and an n-chain is given by

$$F_{x}(m,n) = \sum_{k=1}^{n+1} k^{m} (n-k+2)^{m+1}$$

MOTIVATION CHARACTERIZAT 00 00000 PROPER MERGINGS OF STARS AND CHAINS CONTINUATION O

ANOTHER INTERPRETATION OF $F_{\mathfrak{x}}(m, n)$

- consider the maps $u_m(h) = h^m$ and $v_m(i,h) = (i 1 + h)^m$
- define the convolution array $(a_{ij})_{i,j}$ of u_m and v_m via

$$\begin{aligned} a_{ij} &= \left(u_m(1), u_m(2), \dots, u_m(j)\right) \star \left(v_m(i, 1), v_m(i, 2), \dots, v_m(i, j)\right) \\ &= \sum_{k=1}^{j} u_m(k) \cdot v_m(i, j - k + 1) \\ &= \sum_{k=1}^{j} \left(k(i + j - k)\right)^m \end{aligned}$$

- consider the maps $u_m(h) = h^m$ and $v_m(i,h) = (i-1+h)^m$
- the sum of the n-th antidiagonal of this array is

$$C(m, n) = \sum_{l=1}^{n} a_{l,n-l+1}$$

= $\sum_{k=1}^{n} k^m (n-k+1)^{m+1}$

• we observe that $F_{\mathfrak{K}}(m,n) = C(m,n+1)$

CHARACTERIZATION 00000 Enumeration 00000000000000000000 CONTINUATION O

PROPER MERGINGS OF STARS AND CHAINS

A BIJECTIVE PROOF?

- ▶ let V_1, V_2, V_3 be sets with $|V_i| = m_i$ for $i \in \{1, 2, 3\}$
- consider the graph $\vec{K}_{m_1,m_2,m_3} = (V, \vec{E})$ with $V = V_1 \uplus V_2 \uplus V_3$ and $\vec{E} = (V_1 \times V_2) \cup (V_2 \times V_3)$
- let $\kappa_n(\vec{K}_{m_1,m_2,m_3})$ denote the number of monotone *n*-colorings of \vec{K}_{m_1,m_2,m_3}
- Christian Krattenthaler observed that $F_{\mathfrak{x}}(m,n) = \kappa_{n+1}(\vec{K}_{m,1,m+1})$

CHARACTERIZATION 00000

Enumeration 00000000000000000000 CONTINUATION O

PROPER MERGINGS OF STARS AND CHAINS

A BIJECTIVE PROOF?

- ▶ let V_1, V_2, V_3 be sets with $|V_i| = m_i$ for $i \in \{1, 2, 3\}$
- consider the graph $\vec{K}_{m_1,m_2,m_3} = (V, \vec{E})$ with $V = V_1 \uplus V_2 \uplus V_3$ and $\vec{E} = (V_1 \times V_2) \cup (V_2 \times V_3)$
- let $\kappa_n(\vec{K}_{m_1,m_2,m_3})$ denote the number of monotone *n*-colorings of \vec{K}_{m_1,m_2,m_3}
- Christian Krattenthaler observed that $F_{\mathfrak{x}}(m,n) = \kappa_{n+1}(\vec{K}_{m,1,m+1})$

Problem

Construct a bijection between the set of proper mergings of \mathfrak{s} and \mathfrak{c} , and the set of monotone (n + 1)-colorings of $\vec{K}_{m,1,m+1}$!

Characterization 00000

Continuation 0

OUTLINE

MOTIVATION

OCHARACTERIZATION

Enumeration

Proper Mergings of Antichains and Chains

Proper Mergings of Stars and Chains

CONTINUATION

- find enumeration formulas for the proper mergings of other families of posets
 - known: $|\mathfrak{M}^{\bullet}_{c,c}|, |\mathfrak{M}^{\bullet}_{a,a}|, |\mathfrak{M}^{\bullet}_{a,c}|, |\mathfrak{M}^{\bullet}_{\mathfrak{s},c}|$
- investigate the relations between $\mathfrak{M}_{P,Q}$ and $\mathfrak{M}_{P',Q}$ under the assumption that P and P' are structurally related
 - we have seen that if P' is a subposet of P, then $(\mathfrak{M}_{P',Q}, \preceq)$ is a quotient lattice of $(\mathfrak{M}_{P,Q}, \preceq)$
 - for instance: if $P = P_1 \times P_2$, can $(\mathfrak{M}_{P,Q}, \preceq)$ be explained via $(\mathfrak{M}_{P_1,Q}, \preceq)$ and $(\mathfrak{M}_{P_2,Q}, \preceq)$?

- find enumeration formulas for the proper mergings of other families of posets
 - known: $|\mathfrak{M}^{\bullet}_{\mathfrak{c},\mathfrak{c}}|, |\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{a}}|, |\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}|, |\mathfrak{M}^{\bullet}_{\mathfrak{s},\mathfrak{c}}|$
- investigate the relations between $\mathfrak{M}_{P,Q}$ and $\mathfrak{M}_{P',Q}$ under the assumption that P and P' are structurally related
 - we have seen that if P' is a subposet of P, then $(\mathfrak{M}_{P',Q}, \preceq)$ is a quotient lattice of $(\mathfrak{M}_{P,Q}, \preceq)$
 - for instance: if $P = P_1 \times P_2$, can $(\mathfrak{M}_{P,Q}, \preceq)$ be explained via $(\mathfrak{M}_{P_1,Q}, \preceq)$ and $(\mathfrak{M}_{P_2,Q}, \preceq)$?

- find enumeration formulas for the proper mergings of other families of posets
 - known: $|\mathfrak{M}^{\bullet}_{\mathfrak{c},\mathfrak{c}}|, |\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{a}}|, |\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{c}}|, |\mathfrak{M}^{\bullet}_{\mathfrak{s},\mathfrak{c}}|$
- investigate the relations between $\mathfrak{M}_{P,Q}$ and $\mathfrak{M}_{P',Q}$ under the assumption that P and P' are structurally related
 - we have seen that if P' is a subposet of P, then $(\mathfrak{M}_{P',Q}, \preceq)$ is a quotient lattice of $(\mathfrak{M}_{P,Q}, \preceq)$
 - for instance: if $P = P_1 \times P_2$, can $(\mathfrak{M}_{P,Q}, \preceq)$ be explained via $(\mathfrak{M}_{P_1,Q}, \preceq)$ and $(\mathfrak{M}_{P_2,Q}, \preceq)$?

- find enumeration formulas for the proper mergings of other families of posets
 - known: $|\mathfrak{M}^{\bullet}_{c,c}|, |\mathfrak{M}^{\bullet}_{\mathfrak{a},\mathfrak{a}}|, |\mathfrak{M}^{\bullet}_{\mathfrak{a},c}|, |\mathfrak{M}^{\bullet}_{\mathfrak{s},c}|$
- investigate the relations between $\mathfrak{M}_{P,Q}$ and $\mathfrak{M}_{P',Q}$ under the assumption that P and P' are structurally related
 - we have seen that if P' is a subposet of P, then $(\mathfrak{M}_{P',Q}, \preceq)$ is a quotient lattice of $(\mathfrak{M}_{P,Q}, \preceq)$
 - ▶ for instance: if $P = P_1 \times P_2$, can $(\mathfrak{M}_{P,Q}, \preceq)$ be explained via $(\mathfrak{M}_{P_1,Q}, \preceq)$ and $(\mathfrak{M}_{P_2,Q}, \preceq)$?

Thank You.

Henri Mühle Proper Mergings of Stars and Chains 34 / 34