Proper Mergings of Stars and Chains are Counted by Sums of Antidiagonals in Certain Convolution Arrays

Henri Mühle

Universität Wien

11th International Conference on Formal Concept Analysis
May 23, 2013

Outline

- Motivation
© Characterization
(B) Enumeration
- Proper Mergings of Antichains and Chains
- Proper Mergings of Stars and Chains
(1) Continuation

OUTLINE

(1) Motivation
(2) Characterization
(8) Enumeration

- Proper Mergings of Antichains and Chains
- Proper Mergings of Stars and ChainsContinuation

Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of P as tasks

- for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of p has to be finished before the execution of p^{\prime} can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and \leq_{P} can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that
we call such a schedule a

Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of P as tasks
for $p, p^{\prime} \in P$, consider $p<_{p} p^{\prime}$ as saying that the execution of p has to be finished before the execution of p^{\prime} can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and \leq_{P} can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset

- How many different schedules exist such that
$\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are executed "in parallel"
no restrictions of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are violated or added
no two tasks are executed at the same time?
we call such a schedule a

Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of P as tasks
for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of p has to be finished before the execution of p^{\prime} can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and \leq_{P} can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are executed "in parallel",
no restrictions of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are violated or added no two tasks are executed at the same time?
we call such a schodule a

Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of P as tasks
for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of p has to be finished before the execution of p^{\prime} can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and \leq_{P} can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that (P, \leq_{P}) and (Q, \leq_{Q}) are executed "in parallel", and no restrictions of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are violated or added? no two tasks are executed at the same time?
we call such a schedule a

Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of P as tasks
for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of p has to be finished before the execution of p^{\prime} can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and \leq_{P} can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that (P, \leq_{P}) and (Q, \leq_{Q}) are executed "in parallel", and no restrictions of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are violated or added? no two tasks are executed at the same time?
we call such a schedule a merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

Motivation

let $\left(P, \leq_{P}\right)$ be a poset
consider the elements of P as tasks
for $p, p^{\prime} \in P$, consider $p<p p^{\prime}$ as saying that the execution of p has to be finished before the execution of p^{\prime} can begin thus, $\left(P, \leq_{P}\right)$ can be seen as a schedule, or an execution plan, and \leq_{P} can be seen as a set of restrictions
let $\left(Q, \leq_{Q}\right)$ be another poset
How many different schedules exist such that
$\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are executed "in parallel",
no restrictions of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are violated or added,
no two tasks are executed at the same time?
we call such a schedule a proper merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

ExAMPLE

Outline

Motivation
©
Characterization
© Enumeration

- Proper Mergings of Antichains and Chains - Proper Mergings of Stars and ChainsContinuation

Characterization

let $(G, M, J),\left(G^{\prime}, M^{\prime}, J^{\prime}\right)$ be formal contexts

- intent of (G, M, J) : a set $A^{J}=\{m \in M \mid a J m$ for all $a \in A\}$ for $A \subseteq G$
- extent of (G, M, J) : a set $B^{J}=\{g \in G \mid g J b$ for all $b \in B\}$ for $B \subseteq M$
bond between (G, M, J) and $\left(G^{\prime}, M^{\prime}, J^{\prime}\right)$: a binary relation $R \subseteq G \times M^{\prime}$ such that for all $g \in G$, the row g^{R} is an intent of $\left(G^{\prime}, M^{\prime}, J^{\prime}\right)$, and for all $m \in M^{\prime}$, the column m^{R} is an extent of (G, M, J)

ExAMPLE

	p_{1}	p_{2}	p_{3}	p_{4}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}
p_{1}	\times		\times	\times						
p_{2}		\times	\times	\times						
p_{3}			\times	\times						
p_{4}				\times						
q_{1}					\times		\times	\times	\times	\times
q_{2}						\times		\times		\times
q_{3}							\times		\times	\times
q_{4}								\times		\times
q_{5}									\times	
q_{6}										\times

ExAMPLE

	p_{1}	p_{2}	p_{3}	p_{4}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}
p_{1}	\times		\times	\times			\times		\times	\times
p_{2}		\times	\times	\times				\times		\times
p_{3}			\times	\times						\times
p_{4}				\times						
q_{1}					\times		\times	\times	\times	\times
q_{2}						\times		\times		\times
q_{3}							\times		\times	\times
q_{4}								\times		\times
q_{5}									\times	
q_{6}										\times

ExAMPLE

	p_{1}	p_{2}	p_{3}	p_{4}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}
p_{1}	\times		\times	\times			\times		\times	\times
p_{2}		\times	\times	\times				\times		\times
p_{3}			\times	\times			\times			\times
p_{4}				\times						
q_{1}					\times		\times	\times	\times	\times
q_{2}						\times		\times		\times
q_{3}							\times		\times	\times
q_{4}								\times		\times
q_{5}									\times	
q_{6}										\times

ExAMPLE

	p_{1}	p_{2}	p_{3}	p_{4}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}
p_{1}	\times		\times	\times			\times		\times	\times
p_{2}		\times	\times	\times			\times	\times	\times	\times
p_{3}			\times	\times			\times		\times	\times
p_{4}				\times						
q_{1}					\times		\times	\times	\times	\times
q_{2}						\times		\times		\times
q_{3}							\times		\times	\times
q_{4}								\times		\times
q_{5}									\times	
q_{6}										\times

Characterization

- let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be disjoint posets, and let $R \subseteq P \times Q$, and $T \subseteq Q \times P$
- for $p, q \in P \cup Q$, define $p \leftarrow R, T q$ if and only if

$$
p \leq_{p} q \text { or } p \leq_{Q} q \text { or }(p, q) \in R \quad \text { or }(p, q) \in T
$$

- merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$: a pair (R, T) such that $\left(P \cup Q, \leftarrow_{R, T}\right)$ is a quasi-ordered set
proper merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$: a merging (R, T) such that $R \cap T^{-1}=\emptyset$

Characterization

Proposition (Ganter, Meschke, M., 2011)

Let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be disjoint posets, and let $R \subseteq P \times Q$ and $T \subseteq Q \times P$. The relation $\leftarrow R, T$ is reflexive and transitive if and only if all of the following are satisfied:

1. R is a bond between $\left(P, P, \not ~_{P}\right)$ and $\left(Q, Q, \not ¥_{Q}\right)$,
2. T is a bond between $\left(Q, Q, \not ¥_{Q}\right)$ and $\left.(P, P, \not)_{P}\right)$,
3. $R \circ T$ is contained in \leq_{P},
4. $T \circ R$ is contained in \leq_{Q}.

Moreover, $\leftarrow_{R, T}$ is antisymmetric if and only if $R \cap T^{-1}=\emptyset$.

Characterization

Proposition (Ganter, Meschke, M., 2011)

Let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be disjoint posets, and let $R \subseteq P \times Q$ and $T \subseteq Q \times P$. The relation $\leftarrow R, T$ is reflexive and transitive if and only if all of the following are satisfied:

1. R is a bond between $\left.(P, P, \not)_{P}\right)$ and $\left(Q, Q, \not{ }_{Q}\right)$,
2. T is a bond between $\left(Q, Q, \not ¥_{Q}\right)$ and $\left.(P, P, \not)_{P}\right)$,
3. $R \circ T$ is contained in \leq_{P},
4. $T \circ R$ is contained in \leq_{Q}.

Moreover, $\leftarrow_{R, T}$ is antisymmetric if and only if $R \cap T^{-1}=\emptyset$.
in other words, $(P \cup Q, \leftarrow R, T)$ is a poset if and only if (R, T) is a proper merging of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

A Lattice Structure

let $\mathfrak{M}_{P, Q}$ denote the set of mergings of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$
define a partial order via

$$
(R, T) \preceq\left(R^{\prime}, T^{\prime}\right) \text { if and only if } R \subseteq R^{\prime} \text { and } T \supseteq T^{\prime} \text {, }
$$

A Lattice Structure

let $\mathfrak{M}_{P, Q}^{\circ}$ denote the set of proper mergings of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$
define a partial order via

$$
(R, T) \preceq\left(R^{\prime}, T^{\prime}\right) \text { if and only if } R \subseteq R^{\prime} \text { and } T \supseteq T^{\prime} \text {, }
$$

A Lattice Structure

let $\mathfrak{M}_{P, Q}^{\bullet}$ denote the set of proper mergings of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$
define a partial order via

$$
(R, T) \preceq\left(R^{\prime}, T^{\prime}\right) \text { if and only if } R \subseteq R^{\prime} \text { and } T \supseteq T^{\prime} \text {, }
$$

```
Theorem (Ganter, Meschke, M., 2011)
Let \(\left(P, \leq_{P}\right)\) and \(\left(Q, \leq_{Q}\right)\) be disjoint posets. The poset \(\left(\mathfrak{M}_{P, Q}, \preceq\right)\) is in fact a distributive lattice, where the least element is
\((\emptyset, P \times Q)\) and the greatest element is \((P \times Q, \emptyset)\).
Moreover, \(\left(\mathfrak{M}_{P, Q}^{\bullet}, \preceq\right)\) is a distributive sublattice of the previous.
```


OutLine

©

Motivation

Characterization

Enumeration

- Proper Mergings of Antichains and Chains - Proper Mergings of Stars and ChainsContinuation

Enumeration

- Is it easy to determine the number of (proper) mergings of two posets $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$?
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

Enumeration

Is it easy to determine the number of (proper) mergings of two posets $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

Enumeration

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_{P}) and (Q, \leq_{Q}) ? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

Enumeration

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_{P}) and (Q, \leq_{Q}) ? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

			0	\vdots	\vdots	\vdots
		0	\vdots	$!$	\vdots	\vdots
§	1	18	142	723	2782	8796
$!$	1	15	105	409	1764	5292

Enumeration

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_{P}) and (Q, \leq_{Q}) ? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$

		\ldots	\ldots	\ldots	\ldots	$\ldots .0$
\AA	1	18	230	2676	30386	344748
\vdots	1	15	155	1443	12899	113235

Enumeration

- Is it easy to determine the number of (proper) mergings of two posets (P, \leq_{P}) and (Q, \leq_{Q}) ? In general, no!
the number of (proper) mergings depends heavily on the structure of $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$
we present the enumeration of two special cases:

1. proper mergings of antichains and chains
2. proper mergings of stars and chains

Outline

Motivation

Characterization
O
Enumeration

- Proper Mergings of Antichains and Chains
- Proper Mergings of Stars and Chains

Preparation

$$
\begin{aligned}
& \text { let } C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\} \text { be a set and define } c_{i} \leq_{\imath} c_{j} \text { if and } \\
& \text { only if } i \leq j
\end{aligned}
$$

```
we notice that }\mp@subsup{c}{i}{}\mp@subsup{Z}{c}{}\mp@subsup{c}{j}{}\mathrm{ if and only if }i<j\mathrm{ , or equivalently
ci}\mp@subsup{<}{c}{}\mp@subsup{c}{j}{}\mathrm{ for all }i,j\in{1,2,\ldots,n
```

thus, the extents of $\left(C, C, \not \geq_{c}\right)$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$
for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form
$\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$ for some $k \in\{1,2, \ldots, n+1\}$

Preparation

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{c} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain

```
we notice that }\mp@subsup{c}{i}{}\mp@subsup{Z}{c}{}\mp@subsup{c}{j}{}\mathrm{ if and only if }i<j\mathrm{ , or equivalently
ci}<\mp@subsup{}{c}{}\mp@subsup{c}{j}{}\mathrm{ for all }i,j\in{1,2,\ldots,n
```


PREPARATION

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{\mathfrak{c}} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain
we notice that $c_{i} \not \bigotimes_{c} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{\mathfrak{c}} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$

PREPARATION

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{\mathfrak{c}} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain
we notice that $c_{i} \not ¥_{\mathfrak{c}} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{c} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$

PREPARATION

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{c} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain
we notice that $c_{i} \not ¥_{c} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{c} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$

$\leq_{\boldsymbol{c}}$	c_{1}	c_{2}	c_{3}	c_{4}
c_{1}	\times	\times	\times	\times
c_{2}		\times	\times	\times
c_{3}			\times	\times
c_{4}				\times

PREPARATION

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{c} c_{j}$ if and only if $i \leq j \rightsquigarrow \mathfrak{c}=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain
we notice that $c_{i} \not ¥_{\mathfrak{c}} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{c} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$

$\leq_{\mathbf{c}}$	c_{1}	c_{2}	c_{3}	c_{4}
c_{1}	\times	\times	\times	\times
c_{2}		\times	\times	\times
c_{3}			\times	\times
c_{4}				\times

$\not{ }_{c}$	c_{1}	c_{2}	c_{3}	c_{4}
c_{1}		\times	\times	\times
c_{2}			\times	\times
c_{3}				\times
c_{4}				

thus, the extents of $\left(C, C, \not ¥_{c}\right)$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form

Preparation

let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set and define $c_{i} \leq_{c} c_{j}$ if and only if $i \leq j \rightsquigarrow c=\left(C, \leq_{\mathfrak{c}}\right)$ is a chain
we notice that $c_{i} \not ¥_{\mathfrak{c}} c_{j}$ if and only if $i<j$, or equivalently $c_{i}<_{c} c_{j}$ for all $i, j \in\{1,2, \ldots, n\}$

$\leq_{\mathbf{c}}$	c_{1}	c_{2}	c_{3}	c_{4}
c_{1}	\times	\times	\times	\times
c_{2}		\times	\times	\times
c_{3}			\times	\times
c_{4}				\times

$\not{ }_{c}$	c_{1}	c_{2}	c_{3}	c_{4}
c_{1}		\times	\times	\times
c_{2}			\times	\times
c_{3}				\times
c_{4}				

thus, the extents of $\left(C, C, \not ¥_{c}\right)$ are of the form $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for some $k \in\{0,1, \ldots, n\}$ and the intents are of the form $\left\{c_{k}, c_{k+1}, \ldots, c_{n}\right\}$ for some $k \in\{1,2, \ldots, n+1\}$

Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j$
thus, the extents and intents of $\left(A, A, F_{a}\right)$ are precisely the subsets of A

Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=(A,=\mathfrak{a})$ is an antichain
thus, the extents and intents of $\left(A, A, F_{a}\right)$ are precisely the subsets of A

Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=\left(A,={ }_{\mathfrak{a}}\right)$ is an antichain a_{3} $a_{4} \bigcirc$
thus, the extents and intents of $\left(A, A, F_{a}\right)$ are precisely the subsets of A

Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=(A,=\mathfrak{a})$ is an antichain
a_{1}
$a_{2} \bigcirc \quad a_{3} \bigcirc \quad a_{4} \bigcirc$

$\boldsymbol{a}_{\mathfrak{a}}$	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	\times			
a_{2}		\times		
a_{3}			\times	
a_{4}				\times

thus, the extents and intents of $\left(A, A, \neq a^{a}\right)$ are precisely the subsets of A

Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=(A,=\mathfrak{a})$ is an antichain
a_{1} $a_{2} \bigcirc \quad a_{3} \bigcirc \quad a_{4} \bigcirc$

$\mathrm{F}_{\mathfrak{a}}$	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	\times			
a_{2}		\times		
a_{3}			\times	
a_{4}				\times

$\neq \mathfrak{a}$	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}		\times	\times	\times
a_{2}	\times		\times	\times
a_{3}	\times	\times		\times
a_{4}	\times	\times	\times	

thus, the extents and intents of $\left(A, A, \not \neq a^{a}\right)$ are precisely the subsets of A

Preparation

let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set and define $a_{i}={ }_{\mathfrak{a}} a_{j}$ if and only if $i=j \rightsquigarrow \mathfrak{a}=(A,=\mathfrak{a})$ is an antichain

$\mathrm{a}_{\mathfrak{a}}$	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	\times			
a_{2}		\times		
a_{3}			\times	
a_{4}				\times

$\neq \mathfrak{a}$	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}		\times	\times	\times
a_{2}	\times		\times	\times
a_{3}	\times	\times		\times
a_{4}	\times	\times	\times	

thus, the extents and intents of $(A, A, \neq \mathfrak{a})$ are precisely the subsets of A

The Idea

if (R, T) is a merging of \mathfrak{a} and \mathfrak{c}, then R must be right-justified and T must be top-justified

The Idea

if (R, T) is a proper merging of \mathfrak{a} and \mathfrak{c}, then R and T must "fit together"

if (R, T) is a proper merging of \mathfrak{a} and \mathfrak{c}, then R and T must "fit together"

The Bijection

- complete bipartite digraph $\vec{K}_{m, n}$: a bipartite digraph with vertex set $V=V_{1} \uplus V_{2}$, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, and edge set $\vec{E}=V_{1} \times V_{2}$
monotone coloring of a digraph: a map $\gamma: V \rightarrow \mathbb{N}$ with the property: if $\left(v_{1}, v_{2}\right) \in \vec{E}$, then $\gamma\left(v_{1}\right) \leq \gamma\left(v_{2}\right)$

The Bijection

complete bipartite digraph $\vec{K}_{m, n}$: a bipartite digraph with vertex set $V=V_{1} \uplus V_{2}$, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, and edge set $\vec{E}=V_{1} \times V_{2}$
monotone coloring of a digraph: a map $\gamma: V \rightarrow \mathbb{N}$ with the property: if $\left(v_{1}, v_{2}\right) \in \vec{E}$, then $\gamma\left(v_{1}\right) \leq \gamma\left(v_{2}\right)$ given a proper merging (R, T) of \mathfrak{a} and \mathfrak{c}, define a monotone ($n+1$)-coloring γ of $\vec{K}_{m, m}$ as follows:
$\gamma\left(v_{i}\right)=k \quad$ if and only if $\begin{cases}v_{i} \in V_{1} & \text { and } a_{i} R c_{j} \\ & \text { for all } n+2-k \leq j \leq n \\ v_{i} \in V_{2} & \text { and } c_{j} T a_{i} \\ & \text { for all } 1 \leq j \leq n+1-k\end{cases}$
this is in fact a bijection!

The Bijection

complete bipartite digraph $\vec{K}_{m, n}$: a bipartite digraph with vertex set $V=V_{1} \uplus V_{2}$, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, and edge set $\vec{E}=V_{1} \times V_{2}$
monotone coloring of a digraph: a map $\gamma: V \rightarrow \mathbb{N}$ with the property: if $\left(v_{1}, v_{2}\right) \in \vec{E}$, then $\gamma\left(v_{1}\right) \leq \gamma\left(v_{2}\right)$
given a proper merging (R, T) of \mathfrak{a} and \mathfrak{c}, define a monotone ($n+1$)-coloring γ of $\vec{K}_{m, m}$ as follows:
$\gamma\left(v_{i}\right)=k \quad$ if and only if $\begin{cases}v_{i} \in V_{1} & \text { and } a_{i} R c_{j} \\ & \text { for all } n+2-k \leq j \leq n \\ v_{i} \in V_{2} & \text { and } c_{j} T a_{i} \\ & \text { for all } 1 \leq j \leq n+1-k\end{cases}$
this is in fact a bijection!

The Enumeration

the number of monotone n-colorings of $\vec{K}_{m_{1}, m_{2}}$ is known

Proposition (Jovović \& Kilibarda, 2004)

Let $\kappa_{n}\left(\vec{K}_{m_{1}, m_{2}}\right)$ denote the number of monotone n-colorings of $\vec{K}_{m_{1}, m_{2}}$. Then,

$$
\begin{aligned}
\kappa_{n}\left(\vec{K}_{m_{1}, m_{2}}\right) & =\sum_{k=1}^{n}\left((n+1-k)^{m_{1}}-(n-k)^{m_{1}}\right) \cdot k^{m_{2}} \\
& =\sum_{k=1}^{n}\left((n+1-k)^{m_{2}}-(n-k)^{m_{2}}\right) \cdot k^{m_{1}} .
\end{aligned}
$$

The Enumeration

in view of the bijection from before, we obtain the following result

THEOREM

The number $F_{\mathfrak{o c}}(m, n)$ of proper mergings of an m-antichain and an n-chain is given by

$$
\begin{aligned}
F_{\mathfrak{x}}(m, n) & =\kappa_{n+1}\left(\vec{K}_{m, m}\right) \\
& =\sum_{k=1}^{n+1}\left((n+2-k)^{m}-(n+1-k)^{m}\right) \cdot k^{m}
\end{aligned}
$$

we need to evaluate the term " 0 " as zero, in order to cover the case $m=0$ correctly

The Enumeration

in view of the bijection from before, we obtain the following result

Theorem

The number $F_{\mathfrak{o c}}(m, n)$ of proper mergings of an m-antichain and an n-chain is given by

$$
\begin{aligned}
F_{\mathfrak{c}}(m, n) & =\kappa_{n+1}\left(\vec{K}_{m, m}\right) \\
& =\sum_{k=1}^{n+1}\left((n+2-k)^{m}-(n+1-k)^{m}\right) \cdot k^{m}
\end{aligned}
$$

we need to evaluate the term " 0^{0} " as zero, in order to cover the case $m=0$ correctly

Outline

Motivation

CharacterizationEnumeration

- Proper Mergings of Antichains and Chains
- Proper Mergings of Stars and Chains
© Continuation

PREPARATION

let $S=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$ be a set and define $s_{i} \leq_{\mathfrak{s}} s_{j}$ if and only if $i=0$ or $i=j$
thus, the extents and of $\left(S, S, \not ¥_{s}\right)$ are either \emptyset or $s_{0} \cup B$ for some $B \subseteq S \backslash\left\{s_{0}\right\}$, and the intents are either S or some subset of $S \backslash\left\{s_{0}\right\}$

PREPARATION

let $S=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$ be a set and define $s_{i} \leq_{\mathfrak{s}} s_{j}$ if and only if $i=0$ or $i=j \rightsquigarrow \mathfrak{s}=\left(S, \leq_{\mathfrak{s}}\right)$ is a star
thus, the extents and of $\left(S, S, \not ¥_{s}\right)$ are either \emptyset or $s_{0} \cup B$ for some $B \subseteq S \backslash\left\{s_{0}\right\}$, and the intents are either S or some subset of $S \backslash\left\{s_{0}\right\}$

PREPARATION

let $S=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$ be a set and define $s_{i} \leq_{\mathfrak{s}} s_{j}$ if and only if $i=0$ or $i=j \quad \rightsquigarrow \mathfrak{s}=\left(S, \leq_{\mathfrak{s}}\right)$ is a star

thus, the extents and of $\left(S, S, \not ¥_{s}\right)$ are either \emptyset or $s_{0} \cup B$ for some $B \subseteq S \backslash\left\{s_{0}\right\}$, and the intents are either S or some subset of $S \backslash\left\{s_{0}\right\}$

PREPARATION

let $S=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$ be a set and define $s_{i} \leq_{\mathfrak{s}} s_{j}$ if and only if $i=0$ or $i=j \quad \rightsquigarrow \mathfrak{s}=\left(S, \leq_{\mathfrak{s}}\right)$ is a star

$s_{\mathfrak{s}}$	s_{0}	s_{1}	s_{2}	s_{3}	s_{4}
s_{0}	\times	\times	\times	\times	\times
s_{1}		\times			
s_{2}			\times		
s_{3}				\times	
s_{4}					\times

thus, the extents and of $\left(S, S, \not ¥_{\mathfrak{s}}\right)$ are either \emptyset or $s_{0} \cup B$ for some $B \subseteq S \backslash\left\{s_{0}\right\}$, and the intents are either S or some subset of $S \backslash\left\{s_{0}\right\}$

Proper Mergings of Stars and Chains

Preparation

let $S=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$ be a set and define $s_{i} \leq_{s} s_{j}$ if and only if $i=0$ or $i=j \rightsquigarrow \mathfrak{s}=\left(S, \leq_{\mathfrak{s}}\right)$ is a star

$s_{\mathfrak{s}}$	s_{0}	s_{1}	s_{2}	s_{3}	s_{4}
s_{0}	\times	\times	\times	\times	\times
s_{1}		\times			
s_{2}			\times		
s_{3}				\times	
s_{4}					\times

$Z_{\mathfrak{s}}$	s_{0}	s_{1}	s_{2}	s_{3}	s_{4}
s_{0}		\times	\times	\times	\times
s_{1}			\times	\times	\times
s_{2}		\times		\times	\times
s_{3}		\times	\times		\times
s_{4}		\times	\times	\times	

thus, the extents and of $\left(S, S, \not \Psi_{\mathfrak{s}}\right)$ are either \emptyset or $s_{0} \cup B$ for some $B \subseteq S \backslash\left\{s_{0}\right\}$, and the intents are either S or some subset of $S \backslash\left\{s_{0}\right\}$

Preparation

let $S=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$ be a set and define $s_{i} \leq_{s} s_{j}$ if and only if $i=0$ or $i=j \quad \rightsquigarrow \mathfrak{s}=\left(S, \leq_{\mathfrak{s}}\right)$ is a star

$s_{\mathfrak{s}}$	s_{0}	s_{1}	s_{2}	s_{3}	s_{4}
s_{0}	\times	\times	\times	\times	\times
s_{1}		\times			
s_{2}			\times		
s_{3}				\times	
s_{4}					\times

$Z_{\mathfrak{s}}$	s_{0}	s_{1}	s_{2}	s_{3}	s_{4}
s_{0}		\times	\times	\times	\times
s_{1}			\times	\times	\times
s_{2}		\times		\times	\times
s_{3}		\times	\times		\times
s_{4}		\times	\times	\times	

thus, the extents and of $\left(S, S, \not ¥_{\mathfrak{s}}\right)$ are either \emptyset or $s_{0} \cup B$ for some $B \subseteq S \backslash\left\{s_{0}\right\}$, and the intents are either S or some subset of $S \backslash\left\{s_{0}\right\}$

The Idea

the poset $\left(S \backslash\left\{s_{0}\right\}, \leq_{\mathfrak{s}}\right)$ is an antichain
we identify $A=S \backslash\left\{s_{0}\right\}$, and $\mathfrak{a}=\left(S \backslash\left\{s_{0}\right\}, \leq_{\mathfrak{s}}\right)$
if (R, T) is a proper merging of \mathfrak{s} and \mathfrak{c}, then (\bar{R}, \bar{T}), with $\bar{R}=R \cap(A \times C)$ and $\bar{T}=T \cap(C \times A)$, is a proper merging of \mathfrak{a} and \mathfrak{c} the map $\eta: \mathfrak{M}_{\mathfrak{s}, \mathfrak{c}}^{\bullet} \rightarrow \mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet},(R, T) \mapsto(\bar{R}, \bar{T})$ is a surjective lattice homomorphism
thus, the lattice $\left(\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}, \preceq\right)$ is a quotient lattice of $\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{c}}^{\bullet}, \preceq\right)$ idea: count the fibers of η and determine the cardinality of each fiber

Proper Mergings of Stars and Chains

A Decomposition

 decompose the set $\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}$ with respect to three parameters:

A Decomposition

 decompose the set $\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}$ with respect to three parameters:
k_{1} : minimal index such that a $R c_{k_{1}}$ for some $a \in A$

A Decomposition

decompose the set $\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}$ with respect to three parameters:

k_{1} : minimal index such that a $R c_{k_{1}}$ for some $a \in A$ k_{2} : maximal index such that $c_{k 2} T$ a for some $a \in A$

A Decomposition

- decompose the set $\mathfrak{M}_{\mathrm{a}, \mathrm{c}}^{\circ}$ with respect to three parameters:

k_{1} : minimal index such that a $R c_{k_{1}}$ for some $a \in A$
k_{2} : maximal index such that $c_{k_{2}} T$ a for some $a \in A$

I: maximal index such that $c_{1} T$ a for all $a \in A$

A Decomposition

decompose the set $\mathfrak{M}_{\mathfrak{a}, \mathrm{c}}^{\circ}$ with respect to three parameters:

k_{1} : minimal index such that a $R c_{k_{1}}$ for some $a \in A$
k_{2} : maximal index such that $c_{k_{2}} T$ a for some $a \in A$

I: maximal index such that c) T a for all $a \in A$
$\rightsquigarrow 1 \leq k_{2}<k_{1}$

A Decomposition

decompose the set $\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}$ with respect to three parameters:

k_{1} : minimal index such that a $R c_{k_{1}}$ for some $a \in A$
k_{2} : maximal index such that $c_{k_{2}} T$ a for some $a \in A$
I : maximal index such that $c_{\text {I }} T$ a for all $a \in A$
$\rightsquigarrow 1 \leq k_{2}<k_{1}$

A Decomposition

 decompose the set $\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}$ with respect to three parameters:
k_{1} : minimal index such that a $R c_{k_{1}}$ for some $a \in A$
k_{2} : maximal index such that $c_{k_{2}} T$ a for some $a \in A$

I: maximal index such that c) T a for all $a \in A$
$\rightsquigarrow 1 \leq k_{2}<k_{1}$

A Decomposition

 decompose the set $\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}$ with respect to three parameters:
k_{1} : minimal index such that a $R c_{k_{1}}$ for some $a \in A$
k_{2} : maximal index such that $c_{k_{2}} T$ a for some $a \in A$

I: maximal index such that $c_{1} T$ a for all $a \in A$
$\rightsquigarrow 1 \leq k_{2}<k_{1}$

A Decomposition

- fix k_{1}, k_{2}, and I, and denote the set of all proper mergings of \mathfrak{a} and \mathfrak{c} which satisfy the previous constraints by $\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\left(k_{1}, k_{2}, l\right)$ let $V=V_{1} \uplus V_{2}$ denote the vertex set of $\vec{K}_{m, m}$, let $F_{V_{1}}\left(m, n, k_{1}\right)$ resp. $F_{V_{2}}\left(m, k_{2}, I\right)$ denote the possibilities of coloring V_{1} resp. V_{2} (with respect to these constraints) we have

$$
\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\right|=\sum\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\left(k_{1}, k_{2}, l\right)\right|=\sum F_{V_{1}}\left(m, n, k_{1}\right) \cdot F_{V_{2}}\left(m, k_{2}, l\right)
$$

A Decomposition

- fix k_{1}, k_{2}, and I, and denote the set of all proper mergings of \mathfrak{a} and \mathfrak{c} which satisfy the previous constraints by $\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\left(k_{1}, k_{2}, l\right)$ let $V=V_{1} \uplus V_{2}$ denote the vertex set of $\vec{K}_{m, m}$, let $F_{V_{1}}\left(m, n, k_{1}\right)$ resp. $F_{V_{2}}\left(m, k_{2}, I\right)$ denote the possibilities of coloring V_{1} resp. V_{2} (with respect to these constraints) we have

$$
\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\right|=\sum\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\left(k_{1}, k_{2}, l\right)\right|=\sum F_{V_{1}}\left(m, n, k_{1}\right) \cdot F_{V_{2}}\left(m, k_{2}, l\right)
$$

LEMMA

$F_{V_{1}}\left(m, n, k_{1}\right)=\left(n+2-k_{1}\right)^{m}-\left(n+1-k_{1}\right)^{m}$.

A Decomposition

fix k_{1}, k_{2}, and I, and denote the set of all proper mergings of \mathfrak{a} and \mathfrak{c} which satisfy the previous constraints by $\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\left(k_{1}, k_{2}, l\right)$
let $V=V_{1} \uplus V_{2}$ denote the vertex set of $\vec{K}_{m, m}$, let
$F_{V_{1}}\left(m, n, k_{1}\right)$ resp. $F_{V_{2}}\left(m, k_{2}, I\right)$ denote the possibilities of coloring V_{1} resp. V_{2} (with respect to these constraints) we have

$$
\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\right|=\sum\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\left(k_{1}, k_{2}, l\right)\right|=\sum F_{V_{1}}\left(m, n, k_{1}\right) \cdot F_{V_{2}}\left(m, k_{2}, l\right)
$$

LEMMA

$$
F_{V_{2}}\left(m, k_{2}, I\right)=\left\{\begin{array}{cl}
1, & \text { if } k_{2}=I \\
\left(k_{2}-I+1\right)^{m}-2\left(k_{2}-I\right)^{m} & \\
+\left(k_{2}-I-1\right)^{m}, & \text { otherwise }
\end{array}\right.
$$

The Fibers of η

let $(R, T) \in \mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\left(k_{1}, k_{2}, l\right)$, and let $\left(R_{o}, T_{o}\right)$ be the proper merging of \mathfrak{s} and \mathfrak{c} which is created from (R, T) by "adding s_{0} to (R, T) "

The Fibers of η

let $(R, T) \in \mathfrak{M}_{\mathfrak{a}, \mathrm{c}}^{\circ}\left(k_{1}, k_{2}, l\right)$, and let $\left(R_{o}, T_{o}\right)$ be the proper merging of \mathfrak{s} and \mathfrak{c} which is created from (R, T) by "adding s_{0} to (R, T) "

The Fibers of η

let $(R, T) \in \mathfrak{M}_{\mathrm{a}, \mathrm{c}}^{\circ}\left(k_{1}, k_{2}, I\right)$, and let $\left(R_{o}, T_{o}\right)$ be the proper merging of \mathfrak{s} and \mathfrak{c} which is created from (R, T) by "adding s_{0} to (R, T) "

The Fibers of η

let $(R, T) \in \mathfrak{M}_{\mathrm{a}, \mathrm{c}}^{\circ}\left(k_{1}, k_{2}, I\right)$, and let $\left(R_{o}, T_{o}\right)$ be the proper merging of \mathfrak{s} and \mathfrak{c} which is created from (R, T) by "adding s_{0} to (R, T) "

The Fibers of η

let $(R, T) \in \mathfrak{M}_{\mathrm{a}, \mathrm{c}}^{\circ}\left(k_{1}, k_{2}, I\right)$, and let $\left(R_{o}, T_{o}\right)$ be the proper merging of \mathfrak{s} and \mathfrak{c} which is created from (R, T) by "adding s_{0} to (R, T) "

The Fibers of η

let $(R, T) \in \mathfrak{M}_{\mathrm{a}, \mathrm{c}}^{\circ}\left(k_{1}, k_{2}, I\right)$, and let $\left(R_{o}, T_{o}\right)$ be the proper merging of \mathfrak{s} and \mathfrak{c} which is created from (R, T) by "adding s_{0} to (R, T) "

The Fibers of η

carefully counting the other possibilities yields the following result

LEMMA

Let $(R, T) \in \mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\left(k_{1}, k_{2}, l\right)$. Then,

$$
\left|\eta^{-1}(R, T)\right|=k_{1}(I+1)-\binom{I+1}{2} .
$$

The Enumeration

in view of the previous reasoning, we obtain the following

$$
\begin{aligned}
\left|\mathfrak{M}_{\mathfrak{s}, \mathfrak{c}}^{\bullet}\right| & =\sum_{(R, T) \in \mathfrak{M}_{\mathrm{a}, \mathrm{c}}^{\bullet}}\left|\eta^{-1}(R, T)\right| \\
& =\sum_{k_{1}=1}^{n+1} \sum_{k_{2}=0}^{k_{1}-1} \sum_{l=0}^{k_{2}} \sum_{(R, T) \in \mathfrak{M}_{\mathfrak{a}, \mathrm{c}}^{\bullet}\left(k_{1}, k_{2}, l\right)}\left|\eta^{-1}(R, T)\right| \\
& =\sum_{k_{1}=1}^{n+1} \sum_{k_{2}=0}^{k_{1}-1} \sum_{l=0}^{k_{2}} F_{V_{1}}\left(m, n, k_{1}\right) F_{V_{2}}\left(m, k_{2}, l\right)\left(k_{1}(I+1)-\binom{I+1}{2}\right) \\
& =\sum_{k_{1}=1}^{n+1} F_{V_{1}}\left(m, n, k_{1}\right) \sum_{k_{2}=0}^{k_{1}-1} \sum_{l=0}^{k_{2}} F_{V_{2}}\left(m, k_{2}, I\right)\left(k_{1}(I+1)-\binom{I+1}{2}\right)
\end{aligned}
$$

The Enumeration

we finally obtain the result

THEOREM

The number $F_{s x}(m, n)$ of proper mergings of an m-star and an n-chain is given by

$$
F_{s c}(m, n)=\sum_{k=1}^{n+1} k^{m}(n-k+2)^{m+1}
$$

ANOTHER INTERPRETATION OF $F_{x x}(m, n)$

consider the maps $u_{m}(h)=h^{m}$ and $v_{m}(i, h)=(i-1+h)^{m}$
define the convolution array $\left(a_{i j}\right)_{i, j}$ of u_{m} and v_{m} via

$$
\begin{aligned}
a_{i j} & =\left(u_{m}(1), u_{m}(2), \ldots, u_{m}(j)\right) \star\left(v_{m}(i, 1), v_{m}(i, 2), \ldots, v_{m}(i, j)\right) \\
& =\sum_{k=1}^{j} u_{m}(k) \cdot v_{m}(i, j-k+1) \\
& =\sum_{k=1}^{j}(k(i+j-k))^{m}
\end{aligned}
$$

ANOTHER INTERPRETATION OF $F_{x x}(m, n)$

consider the maps $u_{m}(h)=h^{m}$ and $v_{m}(i, h)=(i-1+h)^{m}$
the sum of the n-th antidiagonal of this array is

$$
\begin{aligned}
C(m, n) & =\sum_{l=1}^{n} a_{l, n-l+1} \\
& =\sum_{k=1}^{n} k^{m}(n-k+1)^{m+1}
\end{aligned}
$$

we observe that $F_{\mathfrak{s x}}(m, n)=C(m, n+1)$

A Bijective Proof?

let V_{1}, V_{2}, V_{3} be sets with $\left|V_{i}\right|=m_{i}$ for $i \in\{1,2,3\}$ consider the graph $\vec{K}_{m_{1}, m_{2}, m_{3}}=(V, \vec{E})$ with $V=V_{1} \uplus V_{2} \uplus V_{3}$ and $\vec{E}=\left(V_{1} \times V_{2}\right) \cup\left(V_{2} \times V_{3}\right)$
let $\kappa_{n}\left(\vec{K}_{m_{1}, m_{2}, m_{3}}\right)$ denote the number of monotone n-colorings of $\vec{K}_{m_{1}, m_{2}, m_{3}}$
Christian Krattenthaler observed that $F_{s x}(m, n)=\kappa_{n+1}\left(\vec{K}_{m, 1, m+1}\right)$

A Bijective Proof?

let V_{1}, V_{2}, V_{3} be sets with $\left|V_{i}\right|=m_{i}$ for $i \in\{1,2,3\}$ consider the graph $\vec{K}_{m_{1}, m_{2}, m_{3}}=(V, \vec{E})$ with $V=V_{1} \uplus V_{2} \uplus V_{3}$ and $\vec{E}=\left(V_{1} \times V_{2}\right) \cup\left(V_{2} \times V_{3}\right)$
let $\kappa_{n}\left(\vec{K}_{m_{1}, m_{2}, m_{3}}\right)$ denote the number of monotone n-colorings of $\vec{K}_{m_{1}, m_{2}, m_{3}}$
Christian Krattenthaler observed that $F_{\mathfrak{x}}(m, n)=\kappa_{n+1}\left(\vec{K}_{m, 1, m+1}\right)$

Problem

Construct a bijection between the set of proper mergings of \mathfrak{s} and \mathfrak{c}, and the set of monotone $(n+1)$-colorings of $\vec{K}_{m, 1, m+1}$!

Outline

©

 MotivationCharacterizationEnumeration- Proper Mergings of Antichains and Chains - Proper Mergings of Stars and Chains
- Continuation

Outlook

find enumeration formulas for the proper mergings of other families of posets known: $\left|\mathfrak{N}_{\mathrm{c}, \mathrm{c}}^{\circ}\right|,\left|\mathfrak{N}_{\mathrm{a}, \mathrm{a}}^{\circ}\right|,\left|\mathfrak{N}_{\mathrm{a}, \mathrm{c}}^{\circ}\right|,\left|\mathfrak{N}_{\mathrm{s}, \mathrm{c}}^{\circ}\right|$
investigate the relations between $\mathfrak{M}_{P, Q}$ and $\mathfrak{M}_{P^{\prime}, Q}$ under the assumption that P and P^{\prime} are structurally related

Outlook

find enumeration formulas for the proper mergings of other families of posets
known: $\left|\mathfrak{M}_{\mathfrak{c}, \mathfrak{c}}^{\bullet}\right|,\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{a}}^{\bullet}\right|,\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\right|,\left|\mathfrak{M}_{\mathfrak{s}, \mathfrak{c}}^{\bullet}\right|$
investigate the relations between $\mathfrak{M}_{P, Q}$ and $\mathfrak{M}_{P^{\prime}, Q}$ under the assumption that P and P^{\prime} are structurally related

OUTLOOK

find enumeration formulas for the proper mergings of other families of posets

- known: $\left|\mathfrak{M}_{\mathfrak{c}, \mathfrak{c}}^{\bullet}\right|,\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{a}}^{\bullet}\right|,\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\right|,\left|\mathfrak{M}_{\mathfrak{s}, \mathrm{c}}^{\bullet}\right|$
investigate the relations between $\mathfrak{M}_{P, Q}$ and $\mathfrak{M}_{P^{\prime}, Q}$ under the assumption that P and P^{\prime} are structurally related
' we have seen that if P^{\prime} is a subposet of P, then $\left(\mathfrak{M}_{P^{\prime}, Q}, \preceq\right)$ is a quotient lattice of $\left(\mathfrak{M}_{P, Q}, \preceq\right)$

Outlook

find enumeration formulas for the proper mergings of other families of posets

- known: $\left|\mathfrak{M}_{\mathfrak{c}, \mathfrak{c}}^{\bullet}\right|,\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{a}}^{\bullet}\right|,\left|\mathfrak{M}_{\mathfrak{a}, \mathfrak{c}}^{\bullet}\right|,\left|\mathfrak{M}_{\mathfrak{s}, \mathrm{c}}^{\bullet}\right|$
investigate the relations between $\mathfrak{M}_{P, Q}$ and $\mathfrak{M}_{P^{\prime}, Q}$ under the assumption that P and P^{\prime} are structurally related
' we have seen that if P^{\prime} is a subposet of P, then $\left(\mathfrak{M}_{P^{\prime}, Q}, \preceq\right)$ is a quotient lattice of $\left(\mathfrak{M}_{P, Q}, \preceq\right)$
for instance: if $P=P_{1} \times P_{2}$, can $\left(\mathfrak{M}_{P, Q}, \preceq\right)$ be explained via $\left(\mathfrak{M}_{P_{1}, Q}, \preceq\right)$ and $\left(\mathfrak{M}_{P_{2}, Q}, \preceq\right)$?

Thank You.

