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w ∈ Sα Parabolic quotients

descent: (i, j) such that i < j and w(i) = w(j) + 1
(α, 231)-pattern: a triple (i, j, k) with i < j < k in
different α-regions such that w(i) < w(j) and (i, k) is a
descent

α = (1, 3, 1, 2, 4, 3, 1)
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w ∈ Sα Parabolic quotients

descent: (i, j) such that i < j and w(i) = w(j) + 1
(α, 231)-pattern: a triple (i, j, k) with i < j < k in
different α-regions such that w(i) < w(j) and (i, k) is a
descent
(α, 231)-avoiding: does not have an (α, 231)-pattern

 Sα(231)

α = (1, 3, 1, 2, 4, 3, 1)
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Parabolic Noncrossing Partitions

α composition of n

α-partition: a set partition of n, where a block intersects
an α-region in at most one element
bump: two consecutive elements in a block
diagram: graphical representation of α-partitions
noncrossing: no bumps cross in the diagram  NCα

α = (1, 3, 1, 2, 4, 3, 1)
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def
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3 < 4 Failure!
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Theorem ( , N. Williams; 2015)
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of (Sα,≤L).
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Theorem (L.-F. Préville-Ratelle, X. Viennot; 2017)
For every integer composition α, the poset Tνα is a lattice.
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def
=
(
NCα,≤dref

)

Theorem ( ; 2018)
For every integer composition α, the poset NCα is a ranked
meet-semilattice, where the rank of an α-partition is given by the
number of bumps.
NCα is a lattice if and only if α = (n) or α = (1, 1, . . . , 1).
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L = (L,≤) finite lattice; λ edge-labeling; x ∈ L

nucleus: x↓
def
=
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core: interval [x↓, x]
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The Core Label Order of Tα

λα: label w l w′ by the unique descent of w′ that is not
an inversion of w
w 7→ Ψλα

(w) is injective on Sα(231)
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The Core Label Order of Tα

λα: label w l w′ by the unique descent of w′ that is not
an inversion of w
w 7→ Ψλα

(w) is injective on Sα(231)

Theorem ( ; 2018)
Let α be an integer composition of n. We have
CLOλα

(Tα) ∼= NCα if and only if α = (a, 1, 1, . . . , 1, b) for some
a, b ≥ 0.
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The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n
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The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths

α = (6, 1, 1, 1, 1, 1, 1)

21 / 30



Parabolic
Cataland

Henri Mühle

Parabolic
Cataland

Bijections in
Parabolic
Cataland

Posets in
Parabolic
Cataland

Chapoton
Triangles in
Parabolic
Cataland

The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths

Theorem ( ; 2018)
For n > 0 and 1 ≤ t ≤ n, the common cardinality of the sets
Sα(n;t)(231), NCα(n;t) , Dα(n;t) , and Tα(n;t) is

Cat
(
α(n;t)

) def
=

t + 1
n + 1

(
2n− t
n− t

)
.

21 / 30



Parabolic
Cataland

Henri Mühle

Parabolic
Cataland

Bijections in
Parabolic
Cataland

Posets in
Parabolic
Cataland

Chapoton
Triangles in
Parabolic
Cataland

The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths

Theorem ( ; 2018)
For n > 0 and 1 ≤ t ≤ n, the number of noncrossing
α(n;t)-partitions with exactly k bumps is(

n
k

)(
n− t

k

)
−
(

n− 1
k− 1

)(
n− t + 1

k + 1

)
.
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The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths

Theorem ( ; 2018)

For n > 0 and 1 ≤ t ≤ n, we have CLO
(
Tα(n;t)

) ∼= NCα(n;t) .
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α(n;t)-Dyck paths are essentially Ballot paths
zeta polynomial: evaluation at q + 1 counts
q-multichains
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The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths
zeta polynomial: evaluation at q + 1 counts
q-multichains

Theorem (C. Krattenthaler; 2019)
For n > 0 and 1 ≤ t ≤ n, the zeta polynomial of NCα(n;t) is

ZNCα(n;t)
(q) =

t(q− 1) + 1
n(q− 1) + 1

(
nq− t
n− t

)
.
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The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths
zeta polynomial: evaluation at q + 1 counts
q-multichains

Theorem (C. Krattenthaler; 2019)
For n > 0 and 1 ≤ t ≤ n, the number of maximal chains in
NCα(n;t) is tnn−t−1.
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Statistics on Dyck Paths

µ ∈ Dα

peak: coordinate preceded by N and followed by E
bounce peak: common peak of µ and να

base peak: peak at distance 1 from να

H-triangle:
Hα(s, t) def

= ∑
µ∈Dα

speak(µ)−bouncepeak(µ)tbasepeak(µ)

α = (1, 3, 1, 2, 4, 3, 1)

peak = 8
bouncepeak = 2

basepeak = 1
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statistics?
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Möbius Function

P = (P,≤) finite poset

; 0̂, 1̂ least/greatest element

Back

Möbius function: the map µP : P× P→ Z given by

µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0, otherwise

32 / 30



Parabolic
Cataland

Henri Mühle
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µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0, otherwise

Theorem (G.-C. Rota; 1964)
Let P = (P,≤) be a finite poset, and let f , g : P× P→ Z. It
holds f (y) = ∑x≤y g(x) if and only if g(y) = ∑x≤y g(x)µP (x, y).
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P = (P,≤) finite bounded poset; 0̂, 1̂ least/greatest
element Back

Möbius function: the map µP : P× P→ Z given by

µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0, otherwise

Theorem (P. Hall; 1936)
Let P = (P,≤) be a finite bounded poset. The reduced Euler
characteristic of the order complex of

(
P \ {0̂, 1̂},≤) equals

µP (0̂, 1̂) up to sign.
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L = (L,≤) finite lattice Back

join irreducible: j ∈ L such that j = x∨ y implies
j ∈ {x, y}  J (L)
meet irreducible: m ∈ L such that m = x∧ y implies
m ∈ {x, y}  M(L)
length: maximal length of a chain  `(L)
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L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
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