Poset-Topological Aspects of Noncrossing Partition Lattices

i leitti wituitte

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W

EL-Shellability

Lexicographi Shellability and Hurwitz Action

Hurwitz Action

Conclusions

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

LIAFA (Université Paris Diderot)

February 04, 2015

Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction

- Poset Topology
- Noncrossing Partition Lattices

Introduction Poset Topology Noncrossing Partition Lattices

- Lexicographi Shellability o *NC*_W EL-Shellability
- . CL-Shellability
- Lexicographic Shellability and Hurwitz Action
- Hurwitz Action
- Conclusions

Lexicographic Shellability of NC_W EL-Shellability

• CL-Shellability

Lexicographic Shellability and Hurwitz ActionHurwitz Action

Poset-Topologica Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W

CLEASTIC III I III

Lexicographic Shellability and Hurwitz Action

Hurwitz Action

Conclusions

Introduction

- Poset Topology
- Noncrossing Partition Lattices
- Lexicographic Shellability of \mathcal{NC}_W
- EL-Shellability
- CL-Shellability

Lexicographic Shellability and Hurwitz ActionHurwitz Action

Introduction

- Poset Topology
- Noncrossing Partition Lattices

- Lexicographic Shellability of \mathcal{NC}_W
 - EL-Shellability
 - CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Poset Topology

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of \mathcal{NC}_W

EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

- main task: investigate the (topological) structure of the order complex of a poset
- in particular:
 - determine the homotopy type
 - compute the homology
 - compute bases for the homology
- helpful tools: poset labelings

Posets

Poset-Topological Aspects of Noncrossing Partition Lattices

Testing descriptions

Poset Topology Noncrossing Partition Lattice

Lexicographi Shellability o *NC*_W EL-Shellability

CL-Shellability

Lexicographi Shellability and Hurwitz Action

Hurwitz Action

Conclusions

• bounded poset

 $\mathcal{P} \qquad \hat{1} \qquad \\ c \qquad d \\ a \qquad b \qquad \\ \hat{0} \qquad b \qquad \\ \hat{0} \qquad \\$

Posets

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o *NC*_W EL-Shellability

CL-Shellability

Lexicographi Shellability and Hurwitz Action

Conclusions

• proper part

 $\overline{\mathcal{P}}$

 $\begin{vmatrix} c \\ a \end{vmatrix} = \begin{vmatrix} d \\ b \end{vmatrix}$

Posets

Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction

Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

CL-Shellability

Lexicographi Shellability and Hurwitz Action

Hurwitz Action

Conclusions

• order complex $\Delta(\mathcal{P})$

 $\overline{\mathcal{P}}$ $\Delta(\overline{\mathcal{P}})$

6 / 36

Edge-Labelings

Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction

Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

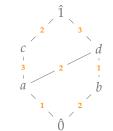
CL-Shellabilit

Lexicographi Shellability and Hurwitz Action

Hurwitz Action

Conclusions

• EL-labeling



Edge-Labelings

Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction

Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

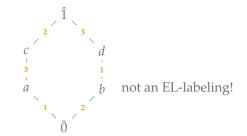
CL-Shellability

Lexicographi Shellability and Hurwitz Action

Hurwitz Action

Conclusions

• EL-labeling



Edge-Labelings

Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction

Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

CL-Shellability

Lexicographi Shellability and Hurwitz Action

Hurwitz Action

Conclusions

• EL-labeling

Chain-Edge-Labelings

Poset-Topological Aspects of Noncrossing Partition Lattices

.....

Introduction

Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

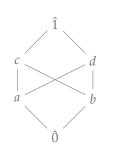
CL-Shellability

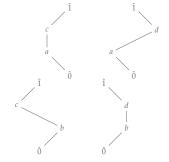
Lexicographi Shellability and Hurwitz Action

Hurwitz Action

Conclusions

• CL-labeling





Chain-Edge-Labelings

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

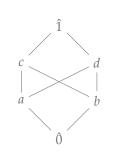
CL-Shellability

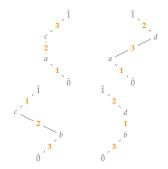
Lexicographi Shellability and Hurwitz Action

Hurwitz Action

Conclusions

• CL-labeling





Chain-Edge-Labelings

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Munie

Introduction

Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

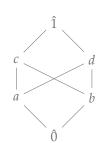
CL-Shellability

Lexicographi Shellability and Hurwitz Action

Hurwitz Action

Conclusions

• CL-labeling





Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattice

Lexicographi Shellability o NC_W

CL-Shellability

Lexicographic Shellability and Hurwitz Action

Hurwitz Action

Conclusions

• recursive atom order: total order $a_1 \prec a_2 \prec \cdots \prec a_s$ such that

- there exists a recursive atom order of [*a_j*, 1] such that the first elements of this order are those that cover some
 - $a_i \prec a_j$
- if i < j and $a_i, a_j \le y$, then there is some k < j and some $z \le y$ such that $a_k, a_j \le z$

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattice

Lexicographi Shellability o NC_W EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action

Hurwitz Action

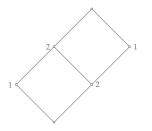
Conclusions

• recursive atom order: total order $a_1 \prec a_2 \prec \cdots \prec a_s$ such that

• there exists a recursive atom order of [*a_j*, 1̂] such that the first elements of this order are those that cover some

 $a_i \prec a_j$

• if i < j and $a_i, a_j \le y$, then there is some k < j and some $z \le y$ such that $a_k, a_j < z$



Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattice

Lexicographi Shellability o NC_W EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action

Hurwitz Action

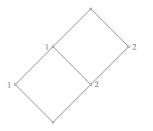
Conclusions

• recursive atom order: total order $a_1 \prec a_2 \prec \cdots \prec a_s$ such that

• there exists a recursive atom order of [*a_j*, 1̂] such that the first elements of this order are those that cover some

 $a_i \prec a_j$

• if i < j and $a_i, a_j \le y$, then there is some k < j and some $z \le y$ such that $a_k, a_j < z$



Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattice

Lexicographic Shellability of NC_W EL-Shellability

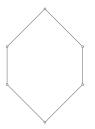
CL-Shellability

Lexicographi Shellability and Hurwitz Action

Conclusione

• recursive atom order: total order $a_1 \prec a_2 \prec \cdots \prec a_s$ such that

- there exists a recursive atom order of $[a_j, \hat{1}]$ such that the first elements of this order are those that cover some $a_i \neq a_i$.
- if i < j and $a_i, a_j \le y$, then there is some k < j and some $z \le y$ such that $a_k, a_j < z$



Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

• recursive atom order: total order $a_1 \prec a_2 \prec \cdots \prec a_s$ such that

• there exists a recursive atom order of [*a_j*, 1̂] such that the first elements of this order are those that cover some

 $a_i \prec a_j$

• if i < j and $a_i, a_j \le y$, then there is some k < j and some $z \le y$ such that $a_k, a_j \le z$

Theorem (Björner & Wachs, 1983)

A bounded poset admits an CL-labeling if and only if it admits a recursive atom order.

Lexicographically Shellable Posets

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction

Poset Topology Noncrossing Partition Lattice

Lexicographic Shellability of NC_W

EL-Shellability

CL-Snellability

Lexicographic Shellability and Hurwitz Action

Hurwitz Action

- lexicographically shellable poset: admits an EL-labeling or a CL-labeling
- if \mathcal{P} is lexicographically shellable, then
 - $\Delta(\overline{\mathcal{P}})$ is shellable,
 - it is homotopic to a wedge of spheres,
 - the dimension of its *i*-th homology group is given by the number of falling maximal chains of length *i* − 2

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

- Lexicographic Shellability of \mathcal{NC}_W EL-Shellability
- Lexicographic Shellability and Hurwitz Action

Hurwitz Action

Conclusions

Introduction

- Poset Topology
- Noncrossing Partition Lattices
- Lexicographic Shellability of \mathcal{NC}_W
 - EL-Shellability
 - CL-Shellability

Lexicographic Shellability and Hurwitz ActionHurwitz Action

Well-Generated Reflection Groups

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

- complex reflection: unitary transformation that fixes a hyperplane pointwise $\rightsquigarrow T$
- complex reflection group: group generated by complex reflections $\rightsquigarrow W$
- rank: codimension of fixed space
- irreducible: no nontrivial factors
- well-generated: irreducible, rank equals minimal number of generators

Well-Generated Reflection Groups

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

- monomial matrix: one non-zero entry per row and per column
- $G(d, e, n) \dots (n \times n)$ -monomial matrices, non-zero entries are *d*-th roots of unity, product is $\frac{d}{e}$ -th root of unity

Theorem (Shephard & Todd, 1954)

A finite group W is a well-generated reflection group if and only if $W \cong G(d, e, n)$ for $d \ge 1$, $e \in \{1, d\}$, or W is one of 26 exceptional groups.

Well-Generated Reflection Groups

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

CL-Shellability

Lexicographi Shellability and Hurwitz Action

Hurwitz Action

•
$$G(1,1,n) \cong A_{n-1} \cong \mathfrak{S}_n$$

•
$$G(2,1,n) \cong B_n$$

•
$$G(2,2,n) \cong D_n$$

•
$$G(d, d, 2) \cong I_2(d) \cong \mathfrak{D}_d$$

•
$$G_{23} \cong H_3$$

•
$$G_{28} \cong F_4$$

•
$$G_{30} \cong H_4$$

•
$$G_{35}\cong E_6$$

•
$$G_{36}\cong E_7$$

•
$$G_{37} \cong E_8$$

Coxeter Elements

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

• degrees: certain invariants of $W \longrightarrow d_1 \le \cdots \le d_n$

 $\rightsquigarrow h$

- Coxeter number: highest degree
- regular element: has eigenvector that does not lie in any reflection hyperplane
- Coxeter element: regular element of order $h \longrightarrow c$

Theorem (Lehrer & Springer, 1999)

Coxeter elements exist in well-generated reflection groups.

Absolute Order

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

- Introduction Poset Topology Noncrossing Partition Lattices
- Lexicographic Shellability of NC_W EL-Shellability
- CL-Shellability
- Lexicographic Shellability and Hurwitz Action
- Conclusions

- absolute length: length of a minimal *T*-decomposition $\rightsquigarrow \ell_T$
- absolute order: $u \leq_T v$ if and only if $\ell_T(v) = \ell_T(u) + \ell_T(u^{-1}v)$

Noncrossing Partition Lattices

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

• W .. well-generated reflection group

Definition (Brady, 2001; Brady & Watt, 2002; Bessis, 2003; Bessis, 2007)

The lattice of noncrossing partitions of *W* is defined to be the interval $[e, c]_T$ between the identity *e* and some Coxeter element *c* of *W* in absolute order. $\rightsquigarrow \mathcal{NC}_W(c)$

Noncrossing Partition Lattices

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

- Lexicographic Shellability of NC_W EL-Shellability
- CL-Shellability
- Lexicographic Shellability and Hurwitz Action
- Conclusions

• combinatorial definitions

- type A: Kreweras, 1971
- type *B*: Reiner, 1997
- type D: Athanasiadis & Reiner, 2004
- type *G*(*d*, *d*, *n*): Bessis & Corran, 2006
- type G(d, 1, n): essentially type B

Noncrossing Partition Lattices

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

- Lexicographic Shellability of NC_W
- CL-Shellability
- Lexicographic Shellability and Hurwitz Action
- Conclusions

• combinatorial definitions

- type A: Kreweras, 1971
- type *B*: Reiner, 1997
- type D: Athanasiadis & Reiner, 2004
- type *G*(*d*, *d*, *n*): Bessis & Corran, 2006
- type *G*(*d*, 1, *n*): essentially type *B*

Example: $\mathcal{NC}_{\mathfrak{S}_4}$

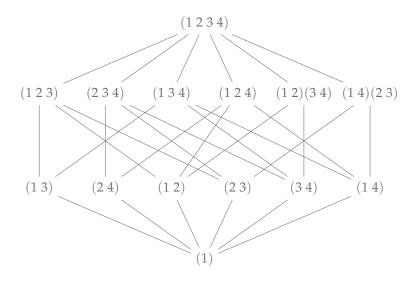
Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action

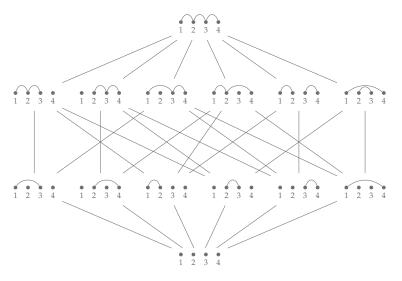
Hurwitz Action



Example: $\mathcal{NC}_{\mathfrak{S}_4}$

Lexicographic Shellability of NC_W EL-Shellability

Lexicographic Shellability and Hurwitz Action



Properties

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

Theorem (Reiner, Ripoll & Stump, 2014)

For any well-generated reflection group W, and any two Coxeter elements $c, c' \in W$, we have $\mathcal{NC}_W(c) \cong \mathcal{NC}_W(c')$.

Properties

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability of NC_W EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

Theorem (Kreweras, 1971; Reiner, 1997; Brady, 2001; Brady & Watt, 2002; Bessis, 2003; Athanasiadis & Reiner, 2004; Bessis & Corran, 2006; Bessis, 2007; Brady & Watt, 2008)

 \mathcal{NC}_W is indeed a lattice for any well-generated reflection group W.

• uniform proof only for Coxeter groups

- Poset Topology
- Noncrossing Partition Lattices

- Lexicographic Shellability of \mathcal{NC}_W
- EL-Shellability
- CL-Shellability

Hurwitz Action

Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction

- Poset Topology
- Noncrossing Partition Lattices

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action

Hurwitz Action

Conclusions

Lexicographic Shellability of NC_W EL-Shellability CL Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz ActionHurwitz Action

EL-Shellability

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W

CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

Theorem (Björner & Edelman, 1980; Reiner, 1997) If $W = A_n$ or $W = B_n$, then \mathcal{NC}_W is EL-shellable for any n > 0.

• restrict labeling that comes from the semimodularity of the partition lattice

EL-Shellability

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W

CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

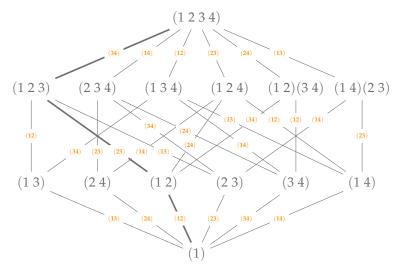
Conclusions

Theorem (Athanasiadis, Brady & Watt, 2007)

If W is a Coxeter group, then \mathcal{NC}_W is EL-shellable.

- label (u, v) by $u^{-1}v \in T$
- use compatible reflection order
- this is uniform!

- Introduction Poset Topology Noncrossing Partition Lattices
- Lexicographi Shellability o NC_W EL-Shellability
- CL-Shellability
- Lexicographic Shellability and Hurwitz Action
- Conclusions



 $(12) \prec (13) \prec (14) \prec (23) \prec (24) \prec (34)$

Generalizations?

- Poset-Topological Aspects of Noncrossing Partition Lattices
- Henri Mühle
- Introduction Poset Topology Noncrossing Partition Lattices
- Lexicographic Shellability of \mathcal{NC}_W
- EL-Shellability
- Lexicographic Shellability and Hurwitz Action Hurwitz Action
- Conclusions

- what about well-generated reflection groups that are no Coxeter groups?
 - can we generalize the proof of Athanasiadis, Brady and Watt?

Compatible Reflection Orders

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

- W .. Coxeter group
- $c \in W$.. Coxeter element
- reflection order: either $t_{\alpha} \prec t_{a\alpha+b\beta} \prec t_{\beta}$ or $t_{\beta} \prec t_{a\alpha+b\beta} \prec t_{\alpha}$

Definition (Athanasiadis, Brady & Watt, 2007)

A reflection order is *c*-compatible if for any rank-2 subgroup of *W*, whose simple reflections are *s*, *t*, we have $s \prec t$ whenever $st \leq_T c$.

Compatible Reflection Orders

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

- W .. well-generated reflection group
- $c \in W$.. Coxeter element
- T_c .. reflections below c

Definition (**%**, 2015)

A total order of T_c is *c*-compatible if for any $w \leq_T c$ with $\ell_T(w) = 2$, there exists a unique rising reduced *T*-decomposition of *w*.

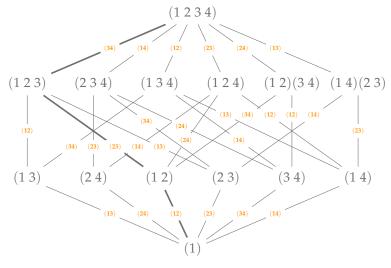
Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

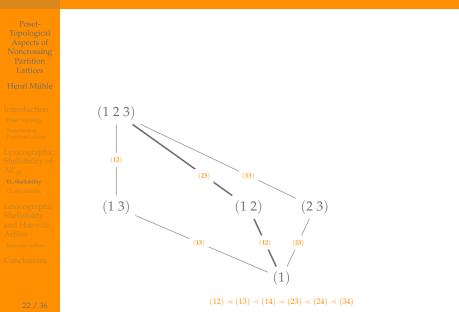
CL-Shellability

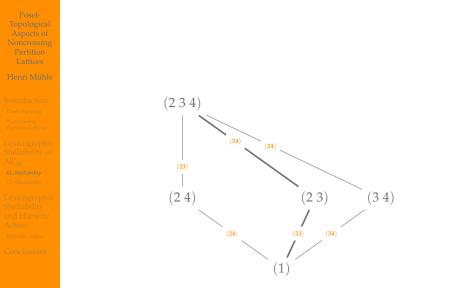
Lexicographic Shellability and Hurwitz Action

Constructions

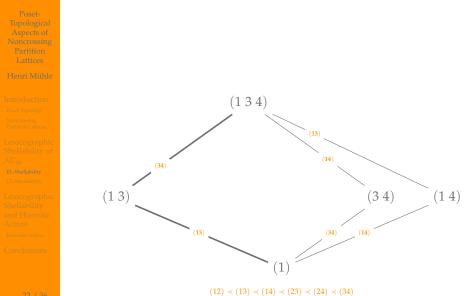


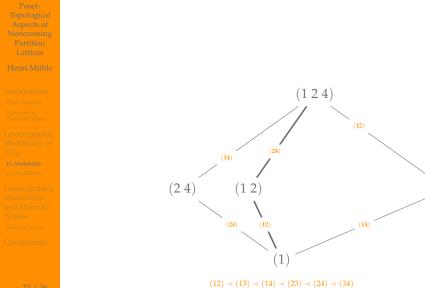
 $(12) \prec (13) \prec (14) \prec (23) \prec (24) \prec (34)$



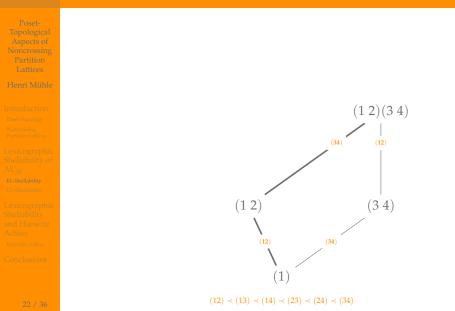


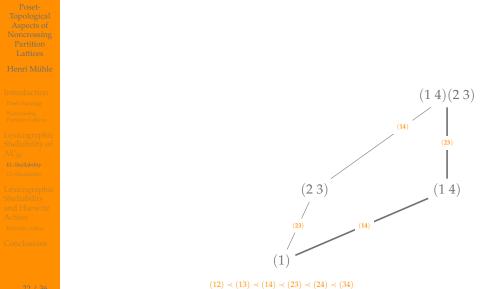
 $(12) \prec (13) \prec (14) \prec (23) \prec (24) \prec (34)$

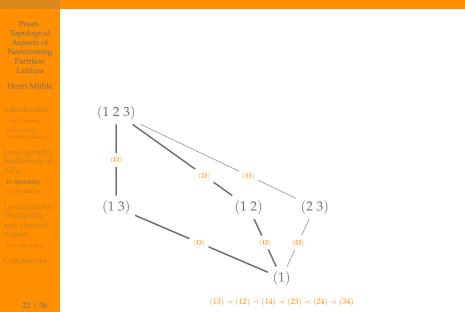




(14)







More EL-Shellability

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o *NC*_W EL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

Theorem (🐇, 2015)

If $W \cong G(d, d, n)$ or if W is one of the exceptional well-generated reflection groups that is not a Coxeter group, then \mathcal{NC}_W is EL-shellable.

- label (u, v) by $u^{-1}v \in T$
- use compatible order for *G*(*d*, *d*, *n*), and a computer verification for the exceptional types
- not uniform!

Outline

Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction

- Poset Topology
- Noncrossing Partition Lattices

- Introduction Poset Topology Noncrossing Partition Lattices
- Lexicographic Shellability of NC_W EL-Shellability
- CL-Shellability
- Lexicographic Shellability and Hurwitz Action
- Hurwitz Action
- Conclusions

Lexicographic Shellability of *NC_W*EL-Shellability

• CL-Shellability

Lexicographic Shellability and Hurwitz ActionHurwitz Action

Unite the Tribes

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

- W .. well-generated reflection group
- $c \in W$.. Coxeter element
- T_c .. reflections below c

Theorem (¥, 2014)

Every c-compatible order of T_c is a recursive atom order of $\mathcal{NC}_W(c)$.

- proof by induction on rank of *W*
- "almost" uniform!

Unite the Tribes

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

- W .. well-generated reflection group
- $c \in W$.. Coxeter element
- T_c .. reflections below c

Theorem (**%**, 2014)

Every c-compatible order of T_c is a recursive atom order of $\mathcal{NC}_W(c)$.

- proof by induction on rank of *W*
- <u>"almost"</u> uniform!

CL-Shellability

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

- Introduction Poset Topology Noncrossing Partition Lattices
- Lexicographic Shellability of NC_W EL-Shellability CL-Shellability
- Lexicographic Shellability and Hurwitz Action Hurwitz Action
- Conclusions

Proposition (%, 2014)

c-compatible orders exist in well-generated reflection groups.

• not uniform!

CL-Shellability

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Nencrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Stellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

Theorem (🗞, 2014)

If W is a well-generated reflection group, then \mathcal{NC}_W is CL-shellable.

• "almost" uniform!

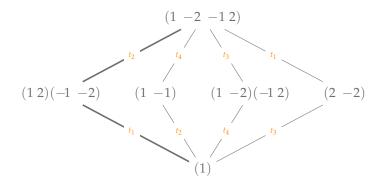
Example: *B*₂

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Turwitz Action

Conclusions



 $t_1 \prec t_3 \prec t_4 \prec t_2$

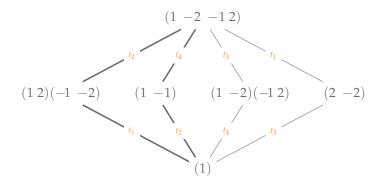
Example: *B*₂

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Harwitz Action

Conclusions



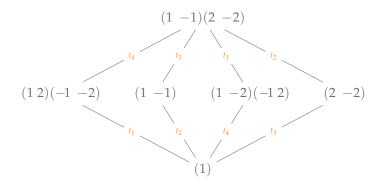
 $t_1 \prec t_2 \prec t_3 \prec t_4$

Example: *B*₂

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability CL Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action



Outline

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

- Lexicographic Shellability of NC_W EL-Shellability CL-Shellability
- Lexicographic Shellability and Hurwitz Action

Hurwitz Action

Conclusions

Introductio

- Poset Topology
- Noncrossing Partition Lattices
- Lexicographic Shellability of \mathcal{NC}_1
- EL-Shellability
- CL-Shellability

Lexicographic Shellability and Hurwitz ActionHurwitz Action

Outline

Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction

- Poset Topology
- Noncrossing Partition Lattices

Poset Topology Noncrossing Partition Lattices

- Lexicographic Shellability of NC_W
 EL-Shellability
 - CL-Shellability

Lexicographic Shellability and Hurwitz ActionHurwitz Action

Hurwitz Action

Conclusions

Hurwitz Action

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability of NC_W

CL-Shellability

Lexicographic Shellability and Hurwitz Action

Hurwitz Action

Hurwitz Action

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Stellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

Theorem (Deligne, 1974; Bessis & Corran, 2006; Bessis, 2007)

For any well-generated reflection group W, and any Coxeter element $c \in W$, the group $\mathfrak{B}_{\ell_T(w)}$ acts transitively on $\operatorname{Red}_T(w)$, whenever $w \leq_T c$.

• uniform proof only for Coxeter groups

A Connection

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

- Introduction Poset Topology Noncrossing Partition Lattices
- Lexicographic Shellability of NC_W EL-Shellability
- Lexicographic Shellability and Hurwitz Action Hurwitz Action
- Conclusions

- W .. well-generated reflection group
- $c \in W$.. Coxeter element

Theorem (🐇, 2015)

If \mathfrak{B}_2 acts transitively on $\operatorname{Red}_T(w)$ for every $w \leq_T c$ with $\ell_T(w) = 2$, and $\mathcal{NC}_W(c)$ is lexicographically shellable, then \mathfrak{B}_n acts transitively on $\operatorname{Red}_T(c)$.

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of *NC*_W EL-Shellability

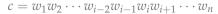
CL-Shellability

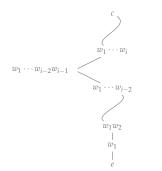
Lexicographic Shellability and Hurwitz Action

Conclusions

• minimal *T*-decompositions of *c* correspond to maximal chains in $\mathcal{NC}_W(c)$

Hurwitz moves correspond to "taking detours"





Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of \mathcal{NC}_W EL-Stellability

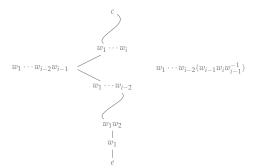
CL-Shellability

Lexicographic Shellability and Hurwitz Action

Conclusions

- minimal *T*-decompositions of *c* correspond to maximal chains in $\mathcal{NC}_W(c)$
- Hurwitz moves correspond to "taking detours"





32 / 36

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability

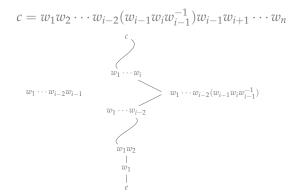
CL-Shellability

Lexicographic Shellability and Hurwitz Action

.....

Conclusions

- minimal *T*-decompositions of *c* correspond to maximal chains in $\mathcal{NC}_W(c)$
 - Hurwitz moves correspond to "taking detours"



32 / 36

Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W

CL Shellability

Lexicographi Shellability and Hurwitz Action

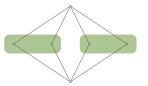
Hurwitz Action

Conclusions

• non-transitivity can be caused by two scenarios

rank-2 violation

large "gaps"



Poset-Topological Aspects of Noncrossing Partition Lattices

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W

CL-Shellability

Lexicographic Shellability and Hurwitz Action

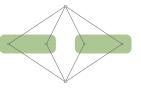
Hurwitz Action

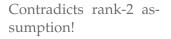
Conclusions

• non-transitivity can be caused by two scenarios

rank-2 violation

large "gaps"





Contradicts shellability assumption!

More Compatibility

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

- *W* .. well-generated reflection group
- $c \in W$.. Coxeter element
- T_c .. reflections below c

Proposition (%, 2015)

If there exists a *c*-compatible order of T_c , then \mathfrak{B}_2 acts transitively on $\operatorname{Red}_T(w)$ for every $w \leq_T c$ with $\ell_T(w) = 2$.

More Compatibility

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

- W .. well-generated reflection group
- $c \in W$.. Coxeter element
- T_c .. reflections below c

Theorem (¥, 2015)

If there exists a *c*-compatible order of T_c , then \mathfrak{B}_n acts transitively on $\operatorname{Red}_T(c)$.

Outline

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of \mathcal{NC}_W

EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action

Hurwitz Action

Conclusions

Introduction

- Poset Topology
- Noncrossing Partition Lattices

- Lexicographic Shellability of \mathcal{NC}_W
- EL-Shellability
- CL-Shellability

Lexicographic Shellability and Hurwitz ActionHurwitz Action

Conclusions

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W

CL Shellshillin

Lexicographic Shellability and Hurwitz Action

Conclusions

• *c*-compatible reflection orders are good!

• for Coxeter groups, they allow uniform solutions for:

- lattice property of \mathcal{NC}_W
- lexicographic shellability of \mathcal{NC}_W
- bases of homology of $\Delta(\overline{\mathcal{NC}_W})$

Conclusions

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W

CL-Shellability

Lexicographic Shellability and Hurwitz Action

Conclusions

- *c*-compatible reflection orders are good!
- for Coxeter groups, they allow uniform solutions for:
 - lattice property of \mathcal{NC}_W
 - lexicographic shellability of \mathcal{NC}_W
 - bases of homology of $\Delta(\overline{\mathcal{NC}_W})$

Conclusions

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographic Shellability of NC_W EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action Hurwitz Action

Conclusions

- *c*-compatible reflection orders are good!
- for Coxeter groups, they allow uniform solutions for:
 - lattice property of \mathcal{NC}_W
 - lexicographic shellability of \mathcal{NC}_W
 - bases of homology of $\Delta(\overline{\mathcal{NC}_W})$

Problem

Give a uniform description of a c-compatible order of the reflections below c for all well-generated reflection groups, and some (uniform) choice of Coxeter element c.

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Introduction Poset Topology Noncrossing Partition Lattices

Lexicographi Shellability o NC_W EL-Shellability

CL-Shellability

Lexicographic Shellability and Hurwitz Action

Conclusions

Merci Beaucoup.

36 / 36

Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugatior Closed Generating Sets

The Braid Group of a Reflection Group

noncrossing (set) partition

Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

noncrossing (set) partition

Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• refinement order: join blocks

Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• refinement order: join blocks

Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• group blocks into cycles

Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• group blocks into cycles



Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• group blocks into cycles

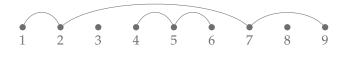
Poset-Topological Aspects of Noncrossing Partition Lattices Happi Müble

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• group blocks into cycles



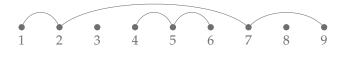
Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• cover relations correspond to transpositions



Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• cover relations correspond to transpositions

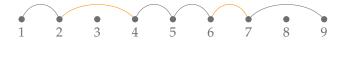
Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• cover relations correspond to transpositions



(1245679)

Poset-Topological Aspects of Noncrossing Partition Lattices

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• cover relations correspond to transpositions

 $(1245679) = (1279)(456) \cdot (26)$

A Symmetric Group Object

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

- T .. transpositions in \mathfrak{S}_n
- *e* .. identity permutation
- *c* .. some long cycle

Theorem (Biane, 1997)

For n > 0, the poset $\mathcal{NC}_n = (\mathcal{NC}_n, \leq_{ref})$ is isomorphic to the interval [e, c] in the Cayley graph of (\mathfrak{S}_n, T) .

• use this connection as a starting point to generalize \mathcal{NC}_n to all well-generated reflection groups

A More General Setting

- generated group: group G with a distinguished generating set A $\rightsquigarrow (G, A)$ $\sim \ell_{A}$
 - define a word length
 - partial orders:

 $u \leq v$ if and only if $\ell_A(v) = \ell_A(u) + \ell_A(u^{-1}v)$

• A closed under conjugation ~ well-defined Hurwitz action

A More General Setting

- generated group: group G with a distinguished generating set A $\rightsquigarrow (G, A)$ $\sim \ell_{A}$
 - define a word length
 - partial orders:

 $u \geq v$ if and only if $\ell_A(u) = \ell_A(v) + \ell_A(uv^{-1})$

• A closed under conjugation ~ well-defined Hurwitz action

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

- (G, A) .. generated group, A closed under conjugation
- $x \in G$.. some element
- A_x ... generators below x

Theorem (**%**, 2015)

Suppose that \mathfrak{B}_2 acts transitively on $\operatorname{Red}_T(A)g$, whenever $\ell_A(g) = 2$. If $[e, x]_A$ is lexicographically shellable, then $\mathfrak{B}_{\ell_A(x)}$ acts transitively on $\operatorname{Red}_T(A)x$.

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

- (G, A) .. generated group, A closed under conjugation
- $x \in G$.. some element
- A_x ... generators below x

Proposition (X, 2015)

If there exists a x-compatible order of A_x , then \mathfrak{B}_2 acts transitively on $\operatorname{Red}_T(A)g$, whenever $\ell_A(g) = 2$.

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

- (G, A) .. generated group, A closed under conjugation
- $x \in G$.. some element
- A_x ... generators below x

Theorem (🗞, 2015)

Every x-compatible order of A_x is a recursive atom order of $[e, x]_A$.

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

- (G, A) .. generated group, A closed under conjugation
- $x \in G$.. some element
- A_x ... generators below x

Theorem (🗞, 2015)

If there exists a x-compatible order of A_x , then $\mathfrak{B}_{\ell_A(x)}$ acts transitively on $\operatorname{Red}_T(A)x$.

More General Questions

- Poset-Topological Aspects of Noncrossing Partition Lattices
- Henri Mühle
- Noncrossing Partitions
- Generated Groups with Conjugation Closed Generating Sets
- The Braid Group of a Reflection Group

- how frequently do generated groups with conjugation closed generating sets appear?
- how frequently do *x*-compatible orders exist in these groups?

The Braid Group of a Reflection Group

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

- braid group: fundamental group of complement of reflection hyperplanes $\rightsquigarrow \mathfrak{B}(W)$
 - $\mathfrak{B}_n = \mathfrak{B}(A_{n-1})$
 - group presentation:

$$W = \left\langle T \mid t_i^{\varepsilon_i} = e, R \right\rangle$$
$$\downarrow$$
$$\mathfrak{B}(W) = \left\langle T \mid R \right\rangle$$

- consider $(\mathfrak{B}(W), \leq_T)$
 - in particular, intervals $[e, c^m]_T$ for some m > 0

The Braid Group of a Reflection Group

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

- braid group: fundamental group of complement of reflection hyperplanes $\rightsquigarrow \mathfrak{B}(W)$
 - $\mathfrak{B}_n = \mathfrak{B}(A_{n-1})$
 - group presentation:

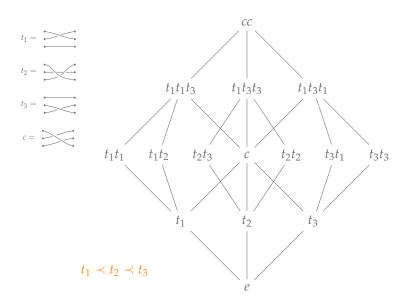
$$W = \left\langle T \mid t_i^{\varepsilon_i} = e, R \right\rangle$$
$$\downarrow$$
$$\mathfrak{B}(W) = \left\langle T \mid R \right\rangle$$

consider (𝔅(W), ≤_T)
in particular, intervals [e, c^m]_T for some m > 0

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

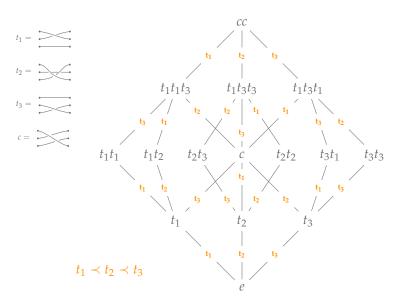


Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets



Henri Mühle

Noncrossing Partitions

Generated Groups wit Conjugation Closed Generating Sets



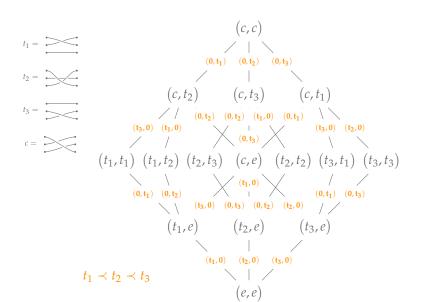
Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group



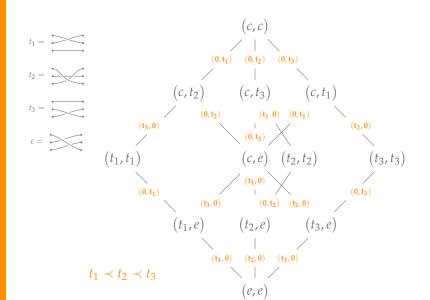
44 / 36

Example: $\mathcal{NC}^{[2]}_{A_2}$

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

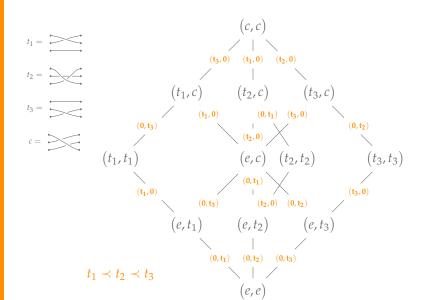


Example: $\mathcal{NC}^{[2]}_{A_2}$

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets



Multichains of Noncrossing Partitions

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

- elements in $NC_W^{[m]}$ are *m*-multichains in \mathcal{NC}_W
 - but: different partial order than Armstrong's *m*-divisible noncrossing partitions!

The Poset of *m*-Multichains

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

- $\mathcal{P} = (P, \leq)$.. some poset
- *m*-multichain: $(x_1, x_2, ..., x_m)$ with $x_1 \le x_2 \le \cdots \le x_m \underset{\sim \to}{\longrightarrow} p^{[m]}$
- poset of *m*-multichains: $(P^{[m]}, \leq) \longrightarrow \mathcal{P}^{[m]}$

The Poset of *m*-Multichains

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

- $\mathcal{P} = (P, \leq)$.. some poset
- *m*-multichain: (x_1, x_2, \ldots, x_m) with $x_1 \le x_2 \le \cdots \le x_m$ $\longrightarrow P^{[m]}$
- poset of *m*-multichains: $(P^{[m]}, \leq) \longrightarrow \mathcal{P}^{[m]}$

Theorem (**%**, 2014)

Let $\mathcal{P} = (P, \leq)$ be a bounded poset, and let $\mathcal{P}^{[m]}$ denote its poset of *m*-multichains, ordered componentwise by \leq . Then, \mathcal{P} is lexicographically shellable if and only if $\mathcal{P}^{[m]}$ is lexicographically shellable for every m > 0.

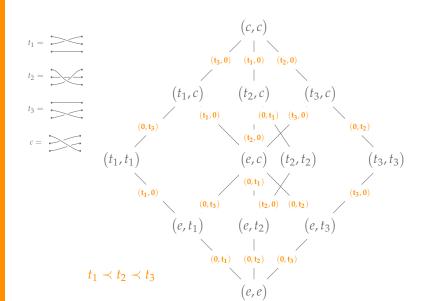
Example: $\mathcal{NC}^{[2]}_{A_2}$

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

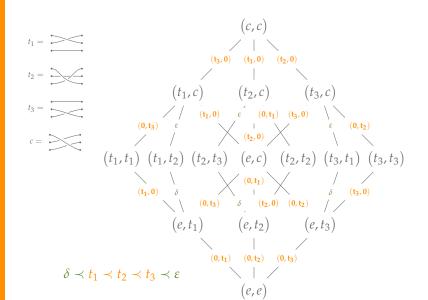


Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets



Rank-2 Intervals

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

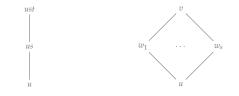
Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group

• rank-2 intervals of $[e, c^m]_T$ in $\mathfrak{B}(W)$ are of one of the two forms

- ~ rank-2 transitivity of the Hurwitz action
- ~> proving lexicographic shellability yields Hurwitz transitivity "for free"!



 $\ell_T(u^{-1}v) = 2$

Rank-2 Intervals

Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

The Braid Group of a Reflection Group • rank-2 intervals of $[e, c^m]_T$ in $\mathfrak{B}(W)$ are of one of the two forms

- ~> rank-2 transitivity of the Hurwitz action
- ~> proving lexicographic shellability yields Hurwitz transitivity "for free"!

 $\ell_T(u^{-1}v) = 2$

Rank-2 Intervals

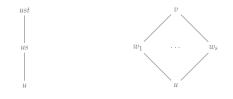
Poset-Topological Aspects of Noncrossing Partition Lattices

Henri Mühle

Noncrossing Partitions

Generated Groups with Conjugation Closed Generating Sets

- rank-2 intervals of $[e, c^m]_T$ in $\mathfrak{B}(W)$ are of one of the two forms
 - ~> rank-2 transitivity of the Hurwitz action
 - ~> proving lexicographic shellability yields Hurwitz transitivity "for free"!



 $\ell_T(u^{-1}v) = 2$