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Poset Topology

main task: investigate the (topological) structure of the
order complex of a poset
in particular:

determine the homotopy type
compute the homology
compute bases for the homology

helpful tools: poset labelings
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Posets

bounded poset

P
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c d
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order complex ∆(P)
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Recursive Atom Orders

recursive atom order: total order a1 ≺ a2 ≺ · · · ≺ as
such that

there exists a recursive atom order of [aj, 1̂] such that the
first elements of this order are those that cover some
ai ≺ aj
if i < j and ai, aj ≤ y, then there is some k < j and some
z ≤ y such that ak, aj l z
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Recursive Atom Orders

recursive atom order: total order a1 ≺ a2 ≺ · · · ≺ as
such that

there exists a recursive atom order of [aj, 1̂] such that the
first elements of this order are those that cover some
ai ≺ aj
if i < j and ai, aj ≤ y, then there is some k < j and some
z ≤ y such that ak, aj l z

Theorem (Björner & Wachs, 1983)
A bounded poset admits an CL-labeling if and only if it admits a
recursive atom order.
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Lexicographically Shellable Posets

lexicographically shellable poset: admits an
EL-labeling or a CL-labeling

if P is lexicographically shellable, then
∆(P) is shellable,
it is homotopic to a wedge of spheres,
the dimension of its i-th homology group is given by
the number of falling maximal chains of length i− 2
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Well-Generated Reflection Groups

complex reflection: unitary transformation that fixes a
hyperplane pointwise  T
complex reflection group: group generated by complex
reflections  W
rank: codimension of fixed space
irreducible: no nontrivial factors
well-generated: irreducible, rank equals minimal
number of generators
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Well-Generated Reflection Groups

monomial matrix: one non-zero entry per row and per
column
G(d, e, n) .. (n× n)-monomial matrices, non-zero entries
are d-th roots of unity, product is d

e -th root of unity

Theorem (Shephard & Todd, 1954)
A finite group W is a well-generated reflection group if and only if
W ∼= G(d, e, n) for d ≥ 1, e ∈ {1, d}, or W is one of 26
exceptional groups.
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Well-Generated Reflection Groups

G(1, 1, n) ∼= An−1
∼= Sn

G(2, 1, n) ∼= Bn

G(2, 2, n) ∼= Dn

G(d, d, 2) ∼= I2(d) ∼= Dd

G23 ∼= H3

G28 ∼= F4

G30 ∼= H4

G35 ∼= E6

G36 ∼= E7

G37 ∼= E8
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Coxeter Elements

degrees: certain invariants of W  d1 ≤ · · · ≤ dn

Coxeter number: highest degree  h
regular element: has eigenvector that does not lie in
any reflection hyperplane
Coxeter element: regular element of order h  c

Theorem (Lehrer & Springer, 1999)
Coxeter elements exist in well-generated reflection groups.
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Absolute Order

absolute length: length of a minimal T-decomposition
 `T

absolute order: u ≤T v if and only if
`T(v) = `T(u) + `T(u−1v)

13 / 36
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Noncrossing Partition Lattices

W .. well-generated reflection group

Definition (Brady, 2001; Brady & Watt, 2002; Bessis,
2003; Bessis, 2007)
The lattice of noncrossing partitions of W is defined to be
the interval [e, c]T between the identity e and some Coxeter
element c of W in absolute order.  NCW(c)

13 / 36
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Noncrossing Partition Lattices

combinatorial definitions
type A: Kreweras, 1971
type B: Reiner, 1997
type D: Athanasiadis & Reiner, 2004
type G(d, d, n): Bessis & Corran, 2006
type G(d, 1, n): essentially type B
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(1 2 3 4)
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Properties

Theorem (Reiner, Ripoll & Stump, 2014)
For any well-generated reflection group W, and any two Coxeter
elements c, c′ ∈ W, we have NCW(c) ∼= NCW(c′).
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Properties

Theorem (Kreweras, 1971; Reiner, 1997; Brady, 2001;
Brady & Watt, 2002; Bessis, 2003; Athanasiadis &
Reiner, 2004; Bessis & Corran, 2006; Bessis, 2007; Brady
& Watt, 2008)
NCW is indeed a lattice for any well-generated reflection group W.

uniform proof only for Coxeter groups
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EL-Shellability

Theorem (Björner & Edelman, 1980; Reiner, 1997)
If W = An or W = Bn, then NCW is EL-shellable for any n > 0.

restrict labeling that comes from the semimodularity of
the partition lattice

18 / 36
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EL-Shellability

Theorem (Athanasiadis, Brady & Watt, 2007)
If W is a Coxeter group, then NCW is EL-shellable.

label (u, v) by u−1v ∈ T
use compatible reflection order
this is uniform!

18 / 36
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(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)19 / 36
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Generalizations?

what about well-generated reflection groups that are no
Coxeter groups?

can we generalize the proof of Athanasiadis, Brady and
Watt?
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Compatible Reflection Orders

W .. Coxeter group
c ∈ W .. Coxeter element
reflection order: either tα ≺ taα+bβ ≺ tβ or

tβ ≺ taα+bβ ≺ tα

Definition (Athanasiadis, Brady & Watt, 2007)
A reflection order is c-compatible if for any rank-2 subgroup
of W, whose simple reflections are s, t, we have s ≺ t
whenever st ≤T c.
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Compatible Reflection Orders

W .. well-generated reflection group
c ∈ W .. Coxeter element
Tc .. reflections below c

Definition ( , 2015)
A total order of Tc is c-compatible if for any w ≤T c with
`T(w) = 2, there exists a unique rising reduced
T-decomposition of w.
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More EL-Shellability

Theorem ( , 2015)
If W ∼= G(d, d, n) or if W is one of the exceptional well-generated
reflection groups that is not a Coxeter group, then NCW is
EL-shellable.

label (u, v) by u−1v ∈ T
use compatible order for G(d, d, n), and a computer
verification for the exceptional types
not uniform!
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Unite the Tribes

W .. well-generated reflection group
c ∈ W .. Coxeter element
Tc .. reflections below c

Theorem ( , 2014)
Every c-compatible order of Tc is a recursive atom order of
NCW(c).

proof by induction on rank of W
“almost” uniform!
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CL-Shellability

Proposition ( , 2014)
c-compatible orders exist in well-generated reflection groups.

not uniform!
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CL-Shellability

Theorem ( , 2014)
If W is a well-generated reflection group, then NCW is
CL-shellable.

“almost” uniform!
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Example: B2
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(1 −2 −1 2)
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Example: B2

(1)

(1 2)(−1 −2) (1 −1) (1 −2)(−1 2) (2 −2)

(1 −1)(2 −2)

t1 t2 t4 t3

t4 t3 t1 t2

???
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Hurwitz Action

braid group: Bk =
〈
σ1, . . . , σk−1 |

(σiσi+1)
3 = (σiσj)

2 = e, for |j− i| > 1
〉

minimal T-decompositions of w ∈ W  RedT(w)

B`T(w) acts on RedT(w) by
σi · (w1 · · ·wk) = w1 · · ·wi−1(wiwi+1w−1

i )wiwi+2 · · ·wk
 Hurwitz move
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Hurwitz Action

Theorem (Deligne, 1974; Bessis & Corran, 2006; Bessis,
2007)
For any well-generated reflection group W, and any Coxeter
element c ∈ W, the group B`T(w) acts transitively on RedT(w),
whenever w ≤T c.

uniform proof only for Coxeter groups
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A Connection

W .. well-generated reflection group
c ∈ W .. Coxeter element

Theorem ( , 2015)
If B2 acts transitively on RedT(w) for every w ≤T c with
`T(w) = 2, and NCW(c) is lexicographically shellable, then Bn
acts transitively on RedT(c).

31 / 36



Poset-
Topological
Aspects of

Noncrossing
Partition
Lattices

Henri Mühle

Introduction
Poset Topology

Noncrossing
Partition Lattices

Lexicographic
Shellability of
NCW
EL-Shellability

CL-Shellability

Lexicographic
Shellability
and Hurwitz
Action
Hurwitz Action

Conclusions

Sketch of Proof

minimal T-decompositions of c correspond to maximal
chains in NCW(c)
Hurwitz moves correspond to “taking detours”

c = w1w2 · · ·wi−2wi−1wiwi+1 · · ·wn

e

w1

w1w2

w1 · · ·wi−2

w1 · · ·wi−2wi−1

w1 · · ·wi

c
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Sketch of Proof

non-transitivity can be caused by two scenarios

rank-2 violation

Contradicts rank-2 as-
sumption!

large “gaps”

Contradicts shellability
assumption!
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More Compatibility

W .. well-generated reflection group
c ∈ W .. Coxeter element
Tc .. reflections below c

Proposition ( , 2015)
If there exists a c-compatible order of Tc, then B2 acts transitively
on RedT(w) for every w ≤T c with `T(w) = 2.

33 / 36



Poset-
Topological
Aspects of

Noncrossing
Partition
Lattices

Henri Mühle

Introduction
Poset Topology

Noncrossing
Partition Lattices

Lexicographic
Shellability of
NCW
EL-Shellability

CL-Shellability

Lexicographic
Shellability
and Hurwitz
Action
Hurwitz Action

Conclusions

More Compatibility

W .. well-generated reflection group
c ∈ W .. Coxeter element
Tc .. reflections below c

Theorem ( , 2015)
If there exists a c-compatible order of Tc, then Bn acts transitively
on RedT(c).

33 / 36



Poset-
Topological
Aspects of

Noncrossing
Partition
Lattices

Henri Mühle

Introduction
Poset Topology

Noncrossing
Partition Lattices

Lexicographic
Shellability of
NCW
EL-Shellability

CL-Shellability

Lexicographic
Shellability
and Hurwitz
Action
Hurwitz Action

Conclusions

Outline

1 Introduction
Poset Topology
Noncrossing Partition Lattices

2 Lexicographic Shellability of NCW
EL-Shellability
CL-Shellability

3 Lexicographic Shellability and Hurwitz Action
Hurwitz Action

4 Conclusions

34 / 36



Poset-
Topological
Aspects of

Noncrossing
Partition
Lattices

Henri Mühle

Introduction
Poset Topology

Noncrossing
Partition Lattices

Lexicographic
Shellability of
NCW
EL-Shellability

CL-Shellability

Lexicographic
Shellability
and Hurwitz
Action
Hurwitz Action

Conclusions

Conclusions

c-compatible reflection orders are good!
for Coxeter groups, they allow uniform solutions for:

lattice property of NCW
lexicographic shellability of NCW
bases of homology of ∆

(
NCW

)
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Conclusions

c-compatible reflection orders are good!
for Coxeter groups, they allow uniform solutions for:

lattice property of NCW
lexicographic shellability of NCW
bases of homology of ∆

(
NCW

)

Problem
Give a uniform description of a c-compatible order of the
reflections below c for all well-generated reflection groups, and
some (uniform) choice of Coxeter element c.
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Merci Beaucoup.
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A Symmetric Group Object

T .. transpositions in Sn

e .. identity permutation
c .. some long cycle

Theorem (Biane, 1997)
For n > 0, the poset NCn = (NCn,≤ref) is isomorphic to the
interval [e, c] in the Cayley graph of (Sn, T).

use this connection as a starting point to generalize
NCn to all well-generated reflection groups
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action
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More General Results

(G, A) .. generated group, A closed under conjugation
x ∈ G .. some element
Ax .. generators below x

Theorem ( , 2015)
Suppose that B2 acts transitively on RedT(A)g, whenever
`A(g) = 2. If [e, x]A is lexicographically shellable, then B`A(x)
acts transitively on RedT(A)x.
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(G, A) .. generated group, A closed under conjugation
x ∈ G .. some element
Ax .. generators below x

Proposition ( , 2015)
If there exists a x-compatible order of Ax, then B2 acts
transitively on RedT(A)g, whenever `A(g) = 2.
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More General Questions

how frequently do generated groups with conjugation
closed generating sets appear?
how frequently do x-compatible orders exist in these
groups?
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The Braid Group of a Reflection Group

braid group: fundamental group of complement of
reflection hyperplanes  B(W)

Bn = B(An−1)

group presentation:

W =
〈
T | tεi

i = e, R
〉

↓
B(W) =

〈
T | R

〉
consider

(
B(W),≤T

)
in particular, intervals [e, cm]T for some m > 0
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Multichains of Noncrossing Partitions

elements in NC[m]
W are m-multichains in NCW

but: different partial order than Armstrong’s
m-divisible noncrossing partitions!
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The Poset of m-Multichains

P = (P,≤) .. some poset
m-multichain: (x1, x2, . . . , xm) with x1 ≤ x2 ≤ · · · ≤ xm

 P[m]

poset of m-multichains:
(
P[m],≤

)
 P [m]
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m-multichain: (x1, x2, . . . , xm) with x1 ≤ x2 ≤ · · · ≤ xm

 P[m]

poset of m-multichains:
(
P[m],≤

)
 P [m]

Theorem ( , 2014)

Let P = (P,≤) be a bounded poset, and let P [m] denote its poset
of m-multichains, ordered componentwise by ≤. Then, P is
lexicographically shellable if and only if P [m] is lexicographically
shellable for every m > 0.
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Rank-2 Intervals

rank-2 intervals of [e, cm]T in B(W) are of one of the
two forms

 rank-2 transitivity of the Hurwitz action
 proving lexicographic shellability yields Hurwitz
transitivity “for free”!

u

us

ust

u

w1 · · · ws

v

`T(u−1v) = 2
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