Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Technische Universität Dresden

July 25, 2022

Matroids, Ordered Structures, Arrangements in Combinatorics Manchester, UK

Outline

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's F- and H-Triangle

2 A Dyck Path Perspective

3 F = H for Posets

Outline

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

① Chapoton's *F*- and *H*-Triangle

2 A Dyck Path Perspective

F = H for Posets

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths cluster complex: faces are pairwise noncrossing diagonals of regular (n + 3)-gon → Clus(n)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- cluster complex: faces are pairwise noncrossing diagonals of regular (*n* + 3)-gon → Clus(*n*)
- two statistics pos and neg control two types of vertices

- Chapoton's Triangles, Lattice Paths and Reciprocity
- Henri Mühle
- Chapoton's Fand H-Triangle
- A Dyck Path Perspective
- F = H for Posets
- Schröder Paths

- **cluster complex**: faces are pairwise noncrossing diagonals of regular (*n* + 3)-gon → Clus(*n*)
- two statistics pos and neg control two types of vertices

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- cluster complex: faces are pairwise noncrossing diagonals of regular (*n* + 3)-gon → Clus(*n*)
- two statistics pos and neg control two types of vertices
- *F*-triangle: $\tilde{\mathcal{F}}_n(x,y) \stackrel{\text{def}}{=} \sum_{F \in \text{Clus}(n)} x^{\text{pos}(F)} y^{\text{neg}(F)}$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- cluster complex: faces are pairwise noncrossing diagonals of regular (*n* + 3)-gon → Clus(*n*)
- two statistics pos and neg control two types of vertices
- *F*-triangle: $\tilde{\mathcal{F}}_n(x,y) \stackrel{\text{def}}{=} \sum_{F \in \text{Clus}(n)} x^{\text{pos}(F)} y^{\text{neg}(F)}$ $\tilde{\mathcal{F}}_3(x,y) = 5x^3 + 5x^2y + 3xy^2 + y^3$ $+10x^2 + 8xy + 3y^2 + 6x + 3y + 1$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- Chapoton's Triangles, Lattice Paths and Reciprocity
- Henri Mühle
- Chapoton's Fand H-Triangle
- A Dyck Path Perspective
- F = H for Posets
- Schröder Paths

- root poset: triangular poset with $\binom{n+1}{2}$ elements $\rightsquigarrow \operatorname{Root}(n)$
- enumerate antichains in $Root(n) \longrightarrow Anti(n)$
- statistic min controls number of minimal elements

- Chapoton's Triangles, Lattice Paths and Reciprocity
- Henri Mühle
- Chapoton's Fand H-Triangle
- A Dyck Path Perspective
- F = H for Posets
- Schröder Paths

- root poset: triangular poset with $\binom{n+1}{2}$ elements $\rightsquigarrow \operatorname{Root}(n)$
- enumerate antichains in $Root(n) \longrightarrow Anti(n)$
- statistic min controls number of minimal elements

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- root poset: triangular poset with $\binom{n+1}{2}$ elements $\rightsquigarrow \operatorname{Root}(n)$
- enumerate antichains in $Root(n) \longrightarrow Anti(n)$
- statistic min controls number of minimal elements

• *H*-triangle:
$$\tilde{\mathcal{H}}_n(x,y) \stackrel{\text{def}}{=} \sum_{A \in Anti(n)} x^{|A|} y^{\min(A)}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- **root poset**: triangular poset with $\binom{n+1}{2}$ elements $\rightsquigarrow \operatorname{Root}(n)$
- enumerate antichains in $Root(n) \longrightarrow Anti(n)$
- statistic min controls number of minimal elements

• *H*-triangle:
$$\tilde{\mathcal{H}}_n(x, y) \stackrel{\text{def}}{=} \sum_{A \in \text{Anti}(n)} x^{|A|} y^{\min(A)}$$

F = H

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Conjecture (F. Chapoton, 2006)

For n > 0,

$$\tilde{\mathcal{F}}_n(x,y) = x^n \tilde{\mathcal{H}}_n\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right)$$

F = H

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Conjecture (D. Armstrong, 2009)

For m, n > 0*,*

$$\tilde{\mathcal{F}}_{n}^{(m)}(x,y) = x^{n}\tilde{\mathcal{H}}_{n}^{(m)}\left(\frac{x+1}{x},\frac{y+1}{x+1}\right)$$

•

F = H

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Theorem (M. Thiel, 2014)

For m, n > 0,

$$\tilde{\mathcal{F}}_{n}^{(m)}(x,y) = x^{n} \tilde{\mathcal{H}}_{n}^{(m)}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right)$$

•

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Theorem (M. Thiel, 2014)

For
$$m, n > 0$$
,
 $\widetilde{\mathcal{F}}_n^{(m)}(x, y) = x^n \widetilde{\mathcal{H}}_n^{(m)}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right).$

 \rightsquigarrow analytic/inductive proof

Outline

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths Chapoton's F- and H-Triangle

2 A Dyck Path Perspective

F = H for Posets

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Dyck path: northeast path from (0,0) to (*n*, *n*) weakly above the diagonal → Dyck(*n*)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Dyck path: northeast path from (0,0) to (*n*, *n*) weakly above the diagonal → Dyck(*n*)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's *F*and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• **Dyck path**: northeast path from (0,0) to (*n*, *n*) weakly above the diagonal → Dyck(*n*)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's *F*and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Dyck path: northeast path from (0,0) to (*n*, *n*) weakly above the diagonal → Dyck(*n*)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's *F*and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Dyck path: northeast path from (0,0) to (*n*, *n*) weakly above the diagonal → Dyck(*n*)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- **Dyck path**: northeast path from (0,0) to (*n*, *n*) weakly above the diagonal → Dyck(*n*)
- $A \in Anti(n)$ corresponds to **valleys** of $\mu \in Dyck(n)$
- minimal elements contained in A correspond to returns

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- **Dyck path**: northeast path from (0,0) to (*n*, *n*) weakly above the diagonal → Dyck(*n*)
- $A \in Anti(n)$ corresponds to **valleys** of $\mu \in Dyck(n)$
- minimal elements contained in A correspond to returns

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- **Dyck path**: northeast path from (0,0) to (*n*, *n*) weakly above the diagonal → Dyck(*n*)
- $A \in Anti(n)$ corresponds to valleys of $\mu \in Dyck(n)$
- minimal elements contained in A correspond to returns

Corollary

For
$$n \geq 1$$
,

$$ilde{\mathcal{H}}_n(x,y) = \sum_{\mu \in \mathsf{Dyck}(n)} x^{\mathsf{val}(\mu)} y^{\mathsf{ret}(\mu)}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• let ν be any northeast path from (0,0) to (m,n)

ν

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• let ν be any northeast path from (0,0) to (m,n)

8 / 22

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's *F*and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

- let ν be any northeast path from (0,0) to (m,n)
- ν -Dyck path: northeast path from (0,0) to (m, n) weakly above $\nu \longrightarrow \text{Dyck}(\nu)$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- let v be any northeast path from (0,0) to (m,n)
- ν -Dyck path: northeast path from (0,0) to (m, n) weakly above $\nu \longrightarrow \text{Dyck}(\nu)$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

- let ν be any northeast path from (0,0) to (m,n)
- *ν*-Dyck path: northeast path from (0,0) to (*m*, *n*) weakly above *ν* → Dyck(*ν*)

• define:
$$\mathcal{H}_{\nu}(x,y) \stackrel{\text{def}}{=} \sum_{\mu \in \mathsf{Dyck}(\nu)} x^{\mathsf{val}(\mu)} y^{\mathsf{ret}(\mu)}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths *define* an *F*-triangle through Chapoton's transformation
 degree: deg(v) ^{def} = max{val(µ): µ ∈ Dyck(v)}

$$\mathcal{F}_{\nu}(x,y) \stackrel{\mathsf{def}}{=} x^{\operatorname{deg}(
u)} \mathcal{H}_{
u}\left(rac{x+1}{x},rac{y+1}{x+1}
ight)$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

•

F = H for Posets

Schröder Paths *define* an *F*-triangle through Chapoton's transformation
 degree: deg(v) ^{def} = max{val(µ): µ ∈ Dyck(v)}

$$\begin{split} \mathcal{F}_{\nu}(x,y) &\stackrel{\text{def}}{=} x^{\deg(\nu)} \mathcal{H}_{\nu}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right) \\ &= \sum_{\mu \in \mathsf{Dyck}(\nu)} x^{\deg(\nu) - \mathsf{val}(\mu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (y+1)^{\mathsf{ret}(\mu)} \end{split}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths *define* an *F*-triangle through Chapoton's transformation
 degree: deg(v) ^{def} = max{val(µ): µ ∈ Dyck(v)}

$$\begin{aligned} \mathcal{F}_{\nu}(x,y) &\stackrel{\text{def}}{=} x^{\deg(\nu)} \mathcal{H}_{\nu}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right) \\ &= \sum_{\mu \in \mathsf{Dyck}(\nu)} x^{\deg(\nu) - \mathsf{val}(\mu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (y+1)^{\mathsf{ret}(\mu)} \end{aligned}$$

 \rightsquigarrow summing subsets of non-return valleys/returns of μ

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths *define* an *F*-triangle through Chapoton's transformation
 degree: deg(ν) ^{def} = max{val(μ): μ ∈ Dyck(ν)}

$$\begin{split} \mathcal{F}_{\nu}(x,y) &\stackrel{\text{def}}{=} x^{\deg(\nu)} \mathcal{H}_{\nu}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right) \\ &= \sum_{\mu \in \mathsf{Dyck}(\nu)} x^{\deg(\nu) - \mathsf{val}(\mu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (y+1)^{\mathsf{ret}(\mu)} \end{split}$$

 \rightsquigarrow summing subsets of valleys of μ

The *v*-Associahedron

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• *v*-associahedron:

Asso $(\nu) \stackrel{\text{def}}{=} \{(\mu, V) \colon \mu \in \mathsf{Dyck}(\nu), V \text{ subset of valleys of } \mu\}$

- dim Asso $(v) = \deg(v)$, dim $(\mu, V) = |V|$
- partition $V = V_1 \uplus V_2$ into non-returns and returns

Theorem (C. Ceballos, A. Padrol & C. Sarmiento, 2019)

For any northeast path ν *,* Asso(ν) *is a polytopal complex.*
Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and *H-*Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• *v*-associahedron:

Asso $(\nu) \stackrel{\text{def}}{=} \{(\mu, V) : \mu \in \text{Dyck}(\nu), V \text{ subset of valleys of } \mu\}$ • dim Asso $(\nu) = \deg(\nu), \dim(\mu, V) = |V|$

$$\mathcal{F}_{\nu}(x,y) = \sum_{\mu \in \mathsf{Dyck}(\nu)} x^{\mathsf{deg}(\nu) - \mathsf{val}(\mu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (y+1)^{\mathsf{ret}(\mu)}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

.

• *v*-associahedron:

Asso $(\nu) \stackrel{\text{def}}{=} \{(\mu, V) : \mu \in \text{Dyck}(\nu), V \text{ subset of valleys of } \mu\}$ • dim Asso $(\nu) = \deg(\nu), \dim(\mu, V) = |V|$

$$\begin{aligned} \mathcal{F}_{\nu}(x,y) &= \sum_{\substack{\mu \in \mathsf{Dyck}(\nu) \\ \mu \in \mathsf{Dyck}(\nu) \\ v = V_1 \uplus V_2}} x^{\mathsf{deg}(\nu) - \mathsf{val}(\mu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (y+1)^{\mathsf{ret}(\mu)} \\ &= \sum_{\substack{(\mu, V) \in \mathsf{Asso}(\nu) \\ V = V_1 \uplus V_2}} x^{\mathsf{deg}(\nu) - \mathsf{val}(\mu)} x^{\mathsf{val}(\mu) - \mathsf{ret}(\mu) - |V_1|} y^{\mathsf{ret}(\mu) - |V_2|} \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and *H-*Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• *v*-associahedron:

Asso $(\nu) \stackrel{\text{def}}{=} \{(\mu, V) : \mu \in \text{Dyck}(\nu), V \text{ subset of valleys of } \mu\}$ • dim Asso $(\nu) = \deg(\nu), \dim(\mu, V) = |V|$

$$\begin{aligned} \mathcal{F}_{\nu}(x,y) &= \sum_{\substack{\mu \in \mathsf{Dyck}(\nu) \\ \nu \in \mathsf{Asso}(\nu) \\ V = V_1 \uplus V_2}} x^{\mathsf{deg}(\nu) - \mathsf{val}(\mu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (y+1)^{\mathsf{ret}(\mu)} \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

.

• *v*-associahedron:

Asso $(\nu) \stackrel{\text{def}}{=} \{(\mu, V) : \mu \in \text{Dyck}(\nu), V \text{ subset of valleys of } \mu\}$ • dim Asso $(\nu) = \deg(\nu), \dim(\mu, V) = |V|$

$$\begin{aligned} \mathcal{F}_{\nu}(x,y) &= \sum_{\substack{\mu \in \mathsf{Dyck}(\nu) \\ \mu \in \mathsf{Dyck}(\nu) \\ v = v_1 \uplus V_2}} x^{\mathsf{deg}(\nu) - \mathsf{ret}(\mu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (y+1)^{\mathsf{ret}(\mu)} \\ &= \sum_{\substack{(\mu, V) \in \mathsf{Asso}(\nu) \\ V = V_1 \uplus V_2}} x^{\mathsf{deg}(\nu) - \mathsf{ret}(\mu) + |V_2| - (|V_1| + |V_2|)} y^{\mathsf{ret}(\mu) - |V_2|} \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• *v*-associahedron:

Asso $(\nu) \stackrel{\text{def}}{=} \{(\mu, V) : \mu \in \text{Dyck}(\nu), V \text{ subset of valleys of } \mu\}$ • dim Asso $(\nu) = \deg(\nu), \dim(\mu, V) = |V|$

$$\begin{aligned} \mathcal{F}_{\nu}(x,y) &= \sum_{\substack{\mu \in \mathsf{Dyck}(\nu) \\ \mu \in \mathsf{Dyck}(\nu) \\ V = V_1 \uplus V_2}} x^{\mathsf{deg}(\nu) - \mathsf{val}(\mu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (y+1)^{\mathsf{ret}(\mu)} \\ &= \sum_{\substack{(\mu, V) \in \mathsf{Asso}(\nu) \\ V = V_1 \uplus V_2}} x^{\mathsf{codim}(\mu, V) - (\mathsf{ret}(\mu) - |V_2|)} y^{\mathsf{ret}(\mu) - |V_2|} \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and *H-*Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• *v*-associahedron:

Asso $(\nu) \stackrel{\text{def}}{=} \{(\mu, V) : \mu \in \text{Dyck}(\nu), V \text{ subset of valleys of } \mu\}$ • dim Asso $(\nu) = \deg(\nu), \dim(\mu, V) = |V|$

• partition $V = V_1 \uplus V_2$ into non-returns and returns

$$\begin{split} \mathcal{F}_{\nu}(x,y) &= \sum_{\substack{\mu \in \mathsf{Dyck}(\nu) \\ \mu \in \mathsf{Dyck}(\nu) }} x^{\mathsf{deg}(\nu) - \mathsf{val}(\mu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (y+1)^{\mathsf{ret}(\mu)} \\ &= \sum_{\substack{(\mu, V) \in \mathsf{Asso}(\nu) \\ V = V_1 \uplus V_2 }} x^{\mathsf{codim}(\mu, V) - (\mathsf{ret}(\mu) - |V_2|)} y^{\mathsf{ret}(\mu) - |V_2|} \\ &= \sum_{(\mu, V) \in \mathsf{Asso}(\nu)} x^{\mathsf{corel}(\mu, V)} y^{\mathsf{rel}(\mu, V)} \end{split}$$

10 / 22

F = H for ν -Dyck Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and *H*-Triangle

A Dyck Path Perspective

F = H fo Posets

Schröder Paths

•
$$\mathcal{F}_{\nu}(x,y) \stackrel{\text{def}}{=} \sum_{(\mu,V)\in Asso(\nu)} x^{\operatorname{corel}(\mu,V)} y^{\operatorname{rel}(\mu,V)}$$

• $\mathcal{H}_{\nu}(x,y) \stackrel{\text{def}}{=} \sum_{\mu\in \operatorname{Dyck}(\nu)} x^{\operatorname{val}(\mu)} y^{\operatorname{ret}(\mu)}$

Theorem (C. Ceballos & 🐇, 2021)

For any northeast path
$$\nu$$
, we have

$$\mathcal{F}_{\nu}(x,y) = x^{\deg(\nu)} \mathcal{H}_{\nu}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right)$$

٠

Outline

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's F- and H-Triangle

2 A Dyck Path Perspective

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

- $\mathbf{P} = (P, \leq); p \in P$
- Succ $(p) \stackrel{\text{def}}{=} \{ p' \in P \colon p \lessdot p' \}$
- $\operatorname{out}(p) \stackrel{\text{def}}{=} \left| \operatorname{Succ}(p) \right|$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

- $\mathbf{P} = (P, \leq); p \in P; \lambda \dots 01$ -labeling
- Succ $(p) \stackrel{\text{def}}{=} \{ p' \in P \colon p \lessdot p' \}$
- $\operatorname{out}(p) \stackrel{\text{def}}{=} \left| \operatorname{Succ}(p) \right|$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and H-Triangle

A Dyck Path Perspective

F = H for Posets

•
$$\mathbf{P} = (P, \leq); p \in P; \lambda \dots 01$$
-labeling

• Succ
$$(p) \stackrel{\text{def}}{=} \{ p' \in P \colon p \lessdot p' \}$$

•
$$\operatorname{out}(p) \stackrel{\operatorname{def}}{=} \left| \operatorname{Succ}(p) \right|$$

•
$$\operatorname{mrk}(p) \stackrel{\text{def}}{=} \left| \left\{ p' \in \operatorname{Succ}(p) \colon \lambda(p,p') = 1 \right\} \right|$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

•
$$\mathbf{P} = (P, \leq); p \in P; \lambda ... 01$$
-labeling
• $\mathcal{H}_{\mathbf{P},\lambda}(x,y) \stackrel{\text{def}}{=} \sum_{p \in P} x^{\operatorname{out}(p)} y^{\operatorname{mrk}(p)}$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

•
$$\mathbf{P} = (P, \leq); p \in P; \lambda ... 01$$
-labeling
• $\mathcal{H}_{\mathbf{P},\lambda}(x,y) \stackrel{\text{def}}{=} \sum_{p \in P} x^{\operatorname{out}(p)} y^{\operatorname{mrk}(p)}$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

•
$$\mathbf{P} = (P, \leq); p \in P$$

• $\deg(\mathbf{P}) \stackrel{\text{def}}{=} \max\{\operatorname{out}(p): p \in P\}$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and H-Triangle

A Dyck Path Perspective

F = H for Posets

•
$$\mathbf{P} = (P, \leq); p \in P; S \subseteq \text{Succ}(p)$$

• $\deg(\mathbf{P}) \stackrel{\text{def}}{=} \max\{\operatorname{out}(p): p \in P\}$
• $\operatorname{rem}(p, S) \stackrel{\text{def}}{=} \operatorname{mrk}(p) - |\{s \in S: \lambda(p, s) = 1\}|$
• $\operatorname{corem}(p, S) \stackrel{\text{def}}{=} \deg(\mathbf{P}) - |S| - \operatorname{rem}(p, S)$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

•
$$\mathbf{P} = (P, \leq); p \in P ; S \subseteq \operatorname{Succ}(p)$$

• $\mathcal{F}_{\mathbf{P},\lambda}(x, y) \stackrel{\text{def}}{=} \sum_{p \in P} \sum_{S \subseteq \operatorname{Succ}(p)} x^{\operatorname{corem}(p,S)} y^{\operatorname{rem}(p,S)}$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

•
$$\mathbf{P} = (P, \leq); p \in P; S \subseteq \text{Succ}(p)$$

• $\mathcal{F}_{\mathbf{P},\lambda}(x,y) \stackrel{\text{def}}{=} \sum_{p \in P} \sum_{S \subseteq \text{Succ}(p)} x^{\text{corem}(p,S)} y^{\text{rem}(p,S)}$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

•
$$\mathbf{P} = (P, \leq); p \in P; S \subseteq \text{Succ}(p)$$

• $\mathcal{F}_{\mathbf{P},\lambda}(x,y) \stackrel{\text{def}}{=} \sum_{p \in P} \sum_{S \subseteq \text{Succ}(p)} x^{\text{corem}(p,S)} y^{\text{rem}(p,S)}$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

•
$$\mathbf{P} = (P, \leq); p \in P; S \subseteq \text{Succ}(p)$$

• $\mathcal{F}_{\mathbf{P},\lambda}(x,y) \stackrel{\text{def}}{=} \sum_{p \in P} \sum_{S \subseteq \text{Succ}(p)} x^{\text{corem}(p,S)} y^{\text{rem}(p,S)}$
• $\mathcal{H}_{\mathbf{P},\lambda}(x,y) \stackrel{\text{def}}{=} \sum_{p \in P} x^{\text{out}(p)} y^{\text{mrk}(p)}$

Theorem (C. Ceballos & *****, 2021)

For every finite poset **P** and every 01-labeling λ , $\mathcal{F}_{\mathbf{P},\lambda}(x,y) = x^{\deg(\mathbf{P})} \mathcal{H}_{\mathbf{P},\lambda}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right).$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

•
$$\mathbf{P} = (P, \leq); p \in P; S \subseteq \text{Succ}(p)$$

• $\mathcal{F}_{\mathbf{P},\lambda}(x,y) \stackrel{\text{def}}{=} \sum_{p \in P} \sum_{S \subseteq \text{Succ}(p)} x^{\text{corem}(p,S)} y^{\text{rem}(p,S)}$
• $\mathcal{H}_{\mathbf{P},\lambda}(x,y) \stackrel{\text{def}}{=} \sum_{p \in P} x^{\text{out}(p)} y^{\text{mrk}(p)}$

Theorem (C. Ceballos & **%**, 2021)

For every finite poset **P** and every 01-labeling λ , $\mathcal{F}_{\mathbf{P},\lambda}(x,y) = x^{\deg(\mathbf{P})} \mathcal{H}_{\mathbf{P},\lambda}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right).$

~> multivariate extension

Back to the Cluster Complex

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schrödeı Paths

• fix integers m, n, t > 0• let $v_{m,n,t} \stackrel{\text{def}}{=} E^{mt} N(E^m N)^{n-t-1} \longrightarrow \text{Dyck}(m, n, t)$

m = 3, n = 5, t = 2

Back to the Cluster Complex

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• t = 1: *m*-Dyck paths

Back to the Cluster Complex

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- fix integers m, n, t > 0
- let $\nu_{m,n,t} \stackrel{\mathsf{def}}{=} E^{mt} N (E^m N)^{n-t-1}$

•
$$t = 1$$
: *m*-Dyck paths

$$\rightsquigarrow \mathsf{Dyck}(m, n, t)$$

Proposition (🏽 & E. Tzanaki, 2022)

For m, n, t > 0*,*

7

$$\mathcal{L}_{m,n,t}(x,y) = \sum_{a=0}^{n-t} \sum_{b=0}^{a} \left(\binom{n-t}{a} \binom{mn-b-1}{a-b} - m\binom{n-t+1}{a+1} \binom{mn-b-2}{a-b-1} \right) x^{a} y^{b}.$$
Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- fix integers m, n, t > 0
- let $\nu_{m,n,t} \stackrel{\mathsf{def}}{=} E^{mt} N (E^m N)^{n-t-1}$

$$t = 1$$
: *m*-Dyck paths

$$\rightsquigarrow \mathsf{Dyck}(m, n, t)$$

Corollary (🎖 & E. Tzanaki, 2022)

For m, n > 0

$$\mathcal{H}_{m,n,1}(x,1) = \sum_{a=0}^{n-1} \frac{1}{n} \binom{n}{a+1} \binom{mn}{a} x^a.$$

The coefficients are the (reverse) Fuß-Narayana numbers.

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- fix integers m, n, t > 0
- let $\nu_{m,n,t} \stackrel{\mathsf{def}}{=} E^{mt} N (E^m N)^{n-t-1}$

•
$$t = 1$$
: *m*-Dyck paths

$$\rightsquigarrow \mathsf{Dyck}(m, n, t)$$

Corollary (& & E. Tzanaki, 2022)

For
$$m, n, t > 0$$
,

$$\mathcal{F}_{m,n,t}(x,y) = \sum_{a=0}^{n-t} \sum_{b=0}^{n-t-a} \frac{b+t}{n} \times \binom{mn+a-1}{a} \binom{mn}{n-t-a-b} x^a y^b.$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's *F*and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• $\mathcal{F}_{m,n,1}(x, y)$ is *not* the correct *F*-triangle

Corollary (& & E. Tzanaki, 2022)

For
$$m, n > 0$$
,
 $\mathcal{F}_{m,n,1}(x,y) = \sum_{a=0}^{n-1} \sum_{b=0}^{n-1-a} \frac{b+1}{n} \times {\binom{mn+a-1}{a}\binom{mn}{n-1-a-b}} x^a y^b.$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's *F*and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• $\mathcal{F}_{m,n,1}(x, y)$ is *not* the correct *F*-triangle

Proposition (C. Krattenthaler, 2006)

For
$$m, n > 0$$
,
 $\tilde{\mathcal{F}}_{m,n,1}(x,y) = \sum_{a=0}^{n-1} \sum_{b=0}^{n-1-a} \frac{b+1}{n} \times {\binom{mn+a-1}{a}\binom{n}{n-1-a-b}} x^a y^b.$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- $\mathcal{F}_{m,n,1}(x, y)$ is *not* the correct *F*-triangle
- solution: count only *particular* valleys

Proposition (C. Krattenthaler, 2006)

For m, n > 0,

$$\tilde{\mathcal{F}}_{m,n,1}(x,y) = \sum_{a=0}^{n-1} \sum_{b=0}^{n-1-a} \frac{b+1}{n} \times \binom{mn+a-1}{a} \binom{n}{n-1-a-b} x^a y^b.$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

• *m*-valley: a valley whose *x*-coordinate is divisible by $m \rightarrow mval(\mu)$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths *m*-valley: a valley whose *x*-coordinate is divisible by *m* → mval(µ)

• every return is an *m*-valley

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths *m*-valley: a valley whose *x*-coordinate is divisible by *m* → mval(µ)

• every return is an *m*-valley • define: $\mathcal{H}_{m,n,t}^{(m)}(x,y) \stackrel{\text{def}}{=} \sum_{\mu \in \mathsf{Dyck}(m,n,t)} x^{\mathsf{mval}(\mu)} y^{\mathsf{ret}(\mu)}$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- *m*-valley: a valley whose *x*-coordinate is divisible by *m* → mval(µ)
- every return is an *m*-valley
- define: $\mathcal{H}_{m,n,t}^{(m)}(x,y) \stackrel{\mathsf{def}}{=} \sum_{\mu \in \mathsf{Dyck}(m,n,t)} x^{\mathsf{mval}(\mu)} y^{\mathsf{ret}(\mu)}$

Proposition (🏽 & E. Tzanaki, 2022)

For
$$m, n, t > 0$$
,
 $\mathcal{H}_{m,n,t}^{(m)}(x,y) = \sum_{a=0}^{n-t} \sum_{b=0}^{a} \left(\binom{n-b-2}{a-b} \binom{mn-t+1}{n-t-a} - m\binom{n-b-1}{a-b} \binom{mn-t}{n-t-a-1} \right) x^{a} y^{b}.$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths *m*-valley: a valley whose *x*-coordinate is divisible by *m* → mval(µ)

 $\mu \in \mathsf{Dyck}(m,n,t)$

• every return is an *m*-valley • define: $\mathcal{H}_{mn}^{(m)}(x,y) \stackrel{\text{def}}{=} \sum x^{\text{mval}(\mu)} y^{\text{ret}(\mu)}$

Corollary (🎖 & E. Tzanaki, 2022)

For
$$m, n > 0$$
,
 $\mathcal{H}_{m,n,1}^{(m)}(x, 1) = \sum_{a=0}^{n-1} \frac{1}{n} \binom{n}{a} \binom{mn}{n-a-1} x^{a}$

The coefficients are the Fuß–Narayana numbers.

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- *m*-valley: a valley whose *x*-coordinate is divisible by *m* → mval(µ)
- every return is an *m*-valley

• define:
$$\mathcal{F}_{m,n,t}^{(m)}(x,y) \stackrel{\text{def}}{=} x^{n-t} \mathcal{H}_{m,n,t}^{(m)}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right)$$

Corollary (🕉 & E. Tzanaki, 2022)

For
$$m, n > 0$$
,
 $\mathcal{H}_{m,n,1}^{(m)}(x,1) = \sum_{a=0}^{n-1} \frac{1}{n} \binom{n}{a} \binom{mn}{n-a-1} x^{a}$

The coefficients are the Fuß-Narayana numbers.

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- *m*-valley: a valley whose *x*-coordinate is divisible by *m* → mval(µ)
- every return is an *m*-valley

• define:
$$\mathcal{F}_{m,n,t}^{(m)}(x,y) \stackrel{\text{def}}{=} x^{n-t} \mathcal{H}_{m,n,t}^{(m)}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right)$$

Corollary (🕉 & E. Tzanaki, 2022)

For
$$m, n, t > 0$$
,

$$\mathcal{F}_{m,n,t}^{(m)}(x,y) = \sum_{a=0}^{n-1} \sum_{b=0}^{n-1-a} \frac{b+t}{n}$$

$$\times \binom{mn+a-1}{a} \binom{n}{n-t-a-b} x^a y^b.$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- *m*-valley: a valley whose *x*-coordinate is divisible by *m* → mval(µ)
- every return is an *m*-valley

• define:
$$\mathcal{F}_{m,n,t}^{(m)}(x,y) \stackrel{\text{def}}{=} x^{n-t} \mathcal{H}_{m,n,t}^{(m)}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right)$$

Corollary (🕉 & E. Tzanaki, 2022)

For
$$m, n > 0$$
,
 $\mathcal{F}_{m,n,1}^{(m)}(x,y) = \sum_{a=0}^{n-1} \sum_{b=0}^{n-1-a} \frac{b+1}{n} \times {\binom{mn+a-1}{a}\binom{n}{n-1-a-b}} x^a y^b.$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- *m*-valley: a valley whose *x*-coordinate is divisible by *m* → mval(µ)
- every return is an *m*-valley

• define:
$$\mathcal{F}_{m,n,t}^{(m)}(x,y) \stackrel{\text{def}}{=} x^{n-t} \mathcal{H}_{m,n,t}^{(m)}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right)$$

Proposition (C. Krattenthaler, 2006)

For
$$m, n > 0$$
,
 $\tilde{\mathcal{F}}_{m,n,1}(x,y) = \sum_{a=0}^{n-1} \sum_{b=0}^{n-1-a} \frac{b+1}{n} \times {\binom{mn+a-1}{a} \binom{n}{n-1-a-b}} x^a y^b.$

Example: m = 2, n = 3, t = 1

Example: m = 2, n = 3, t = 1

Example: m = 2, n = 3, t = 1

 $\mathcal{H}_{2,3,1}(x,y) = x^2y^2 + 2x^2y + 2x^2 + 2xy + 4x + 1$

Example: m = 2, n = 3, t = 1

 $\mathcal{H}_{2,3,1}(x,y) = x^2y^2 + 2x^2y + 2x^2 + 2xy + 4x + 1$

Example: m = 2, n = 3, t = 1

Example: m = 2, n = 3, t = 1

Outline

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Chapoton's F- and H-Triangle

2 A Dyck Path Perspective

F = H for Posets

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

ν-Schröder path: lattice path from (0,0) to (*m*, *n*) weakly above *ν* with possible diagonal steps → Schröder(*ν*)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- *ν*-Schröder path: lattice path from (0,0) to (*m*, *n*) weakly above *ν* with possible diagonal steps
 → Schröder(*ν*)
- two statistics dg and cd control diagonals and cornered diagonals

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

- *ν*-Schröder path: lattice path from (0,0) to (*m*, *n*) weakly above *ν* with possible diagonal steps
 → Schröder(*ν*)
- two statistics dg and cd control diagonals and cornered diagonals

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Theorem (M. von Bell & M. Yip, 2020)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Theorem (M. von Bell & M. Yip, 2020)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's *F*and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Theorem (M. von Bell & M. Yip, 2020)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's *F*and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Theorem (M. von Bell & M. Yip, 2020)

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's *F*and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths • enumerate *v*-Schröder paths with respect to diagonals and cornered diagonals:

$$\mathcal{S}_{\nu}(x,y) \stackrel{\mathsf{def}}{=} \sum_{S \in \mathsf{Schröder}(\nu)} x^{\mathsf{dg}(S)} y^{\mathsf{cd}(S)}$$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths enumerate v-Schröder paths with respect to diagonals and cornered diagonals:

$$\mathcal{S}_{\nu}(x,y) \stackrel{\mathsf{def}}{=} \sum_{S \in \mathsf{Schröder}(
u)} x^{\mathsf{dg}(S)} y^{\mathsf{cd}(S)}$$

Proposition (X & E. Tzanaki, 2022)

For any northeast path ν , we have $\mathcal{S}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1, \frac{xy+1}{x+1}\right).$

Positive *v*-Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths • **positive** ν -Schröder path: $S \in \text{Schröder}(\nu)$ with ret(S) = 0

 \rightsquigarrow Schröder₊(ν)

•
$$\mathcal{P}_{\nu}(x,y) \stackrel{\text{def}}{=} \sum_{S \in \text{Schröder}_{+}(\nu)} x^{\text{dg}(S)} y^{\text{cd}(S)}$$

Positive v-Schröder Paths

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths • **positive** ν -Schröder path: $S \in \text{Schröder}(\nu)$ with ret(S) = 0 \rightsquigarrow Schröder_+ (ν)

• $\mathcal{P}_{\nu}(x,y) \stackrel{\mathsf{def}}{=} \sum_{S \in \mathsf{Schröder}_{+}(\nu)} x^{\mathsf{dg}(S)} y^{\mathsf{cd}(S)}$

Proposition (🌋 & E. Tzanaki, 2022)

For any northeast path ν , we have $\mathcal{P}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1,\frac{xy}{x+1}\right).$

Once again the Cluster Complex

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths • Schröder^(*m*)(*m*, *n*, *t*) ... $\nu_{m,n,t}$ -Schröder paths where all diagonal steps end in *x*-coordinate divisible by *m*

Once again the Cluster Complex

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths Schröder^(m)(m, n, t) ... v_{m,n,t}-Schröder paths where all diagonal steps end in *x*-coordinate divisible by *m* P^(m)_{m,n,t}(x, y) ^{def} = ∑_{S∈Schröder}(^{m)}_(m,n,t) x^{dg(S)}y^{cd(S)}

Proposition (🕷 & E. Tzanaki, 2022)

For m, n, t > 0, we have

$$\mathcal{P}_{m,n,t}^{(m)}(x,y) = \sum_{a=0}^{n-t} \sum_{b=0}^{a} \left(\frac{a+t}{n} - \frac{a-b}{n-b-1} \right) \\ \times \binom{n-b-1}{a-b} \binom{mn+n-t-a-1}{n-t-a} x^{a} y^{b}.$$

Once again the Cluster Complex

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's Fand H-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

•
$$\mathcal{H}_{m,n,t}^{(m)}(x,y) = \sum_{\mu \in \mathsf{Dyck}(m,n,t)} x^{\mathsf{mval}(\mu)} y^{\mathsf{ret}(\mu)}$$

• $\mathcal{P}_{m,n,t}^{(m)}(x,y) \stackrel{\text{def}}{=} \sum_{S \in \mathsf{Schröder}_+^{(m)}(m,n,t)} x^{\mathsf{dg}(S)} y^{\mathsf{cd}(S)}$

Corollary (🎖 & E. Tzanaki, 2022)

For m, n > 0, we have

$$\mathcal{P}_{m,n,1}^{(m)}(x,y) = (-1)^{n-1} \mathcal{H}_{-m,n,1}^{(m)}(-x,y).$$

Example: m = 2, n = 3, t = 1

Example: m = 2, n = 3, t = 1

Example: m = 2, n = 3, t = 1Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle $x^2 u^2$ xų хų хy x 1 Schröder хų 1 1 х

 $\mathcal{P}_{2,3,1}^{(2)}(x,y) = x^2y^2 + 4xy + 2x + 7$

Chapoton's Triangles, Lattice Paths and Reciprocity

Henri Mühle

Chapoton's F and *H*-Triangle

A Dyck Path Perspective

F = H for Posets

Schröder Paths

Thank You.

Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle

Proposition (& E. Tzanaki, 2022)

$$\mathcal{S}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1,\frac{xy+1}{x+1}\right)$$

$$\mathcal{H}_{\nu}\left(x+1,\frac{xy+1}{x+1}\right) = \sum_{\mu \in \mathsf{Dyck}(\nu)} (x+1)^{\mathsf{val}(\mu)-\mathsf{ret}(\mu)} (xy+1)^{\mathsf{ret}(\mu)}$$

Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle

Proposition (& E. Tzanaki, 2022)

$$\mathcal{S}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1,\frac{xy+1}{x+1}\right)$$

$$\begin{aligned} \mathcal{H}_{\nu}\left(x+1,\frac{xy+1}{x+1}\right) &= \sum_{\mu \in \mathsf{Dyck}(\nu)} (x+1)^{\mathsf{val}(\mu)-\mathsf{ret}(\mu)} (xy+1)^{\mathsf{ret}(\mu)} \\ &= \sum_{\substack{(\mu,V) \in \mathsf{Asso}(\nu)\\V=V_1 \uplus V_2}} x^{|V_1|} (xy)^{|V_2|} \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle

Proposition (& E. Tzanaki, 2022)

$$\mathcal{S}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1,\frac{xy+1}{x+1}\right)$$

$$\begin{aligned} \mathcal{H}_{\nu}\left(x+1,\frac{xy+1}{x+1}\right) &= \sum_{\substack{\mu \in \mathsf{Dyck}(\nu) \\ \mu \in \mathsf{Asso}(\nu) \\ V = V_1 \uplus V_2}} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (xy+1)^{\mathsf{ret}(\mu)} \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle

Proposition (🌋 & E. Tzanaki, 2022)

$$\mathcal{S}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1, \frac{xy+1}{x+1}\right)$$

$$\begin{aligned} \mathcal{H}_{\nu}\left(x+1,\frac{xy+1}{x+1}\right) &= \sum_{\substack{\mu \in \mathsf{Dyck}(\nu) \\ \mu \in \mathsf{Dyck}(\nu)}} (x+1)^{\mathsf{val}(\mu)-\mathsf{ret}(\mu)} (xy+1)^{\mathsf{ret}(\mu)} \\ &= \sum_{\substack{(\mu,V) \in \mathsf{Asso}(\nu) \\ V = V_1 \uplus V_2}} x^{|V|} y^{|V_2|} \\ &= \sum_{\substack{S \in \mathsf{Schröder}(\nu) \\ S \in \mathsf{Schröder}(\nu)}} x^{\mathsf{dg}(S)} y^{\mathsf{cd}(S)} \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle

Proposition (🌋 & E. Tzanaki, 2022)

$$\mathcal{S}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1, \frac{xy+1}{x+1}\right)$$

$$\begin{aligned} \mathcal{H}_{\nu}\left(x+1,\frac{xy+1}{x+1}\right) &= \sum_{\mu \in \mathsf{Dyck}(\nu)} (x+1)^{\mathsf{val}(\mu)-\mathsf{ret}(\mu)} (xy+1)^{\mathsf{ret}(\mu)} \\ &= \sum_{\substack{(\mu,V) \in \mathsf{Asso}(\nu)\\V=V_1 \uplus V_2}} x^{|V|} y^{|V_2|} \\ &= \sum_{S \in \mathsf{Schröder}(\nu)} x^{\mathsf{dg}(S)} y^{\mathsf{cd}(S)} = \mathcal{S}_{\nu}(x,y) \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle

Proposition (🌋 & E. Tzanaki, 2022)

$$\mathcal{P}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1,\frac{xy}{x+1}\right)$$

$$\mathcal{H}_{\nu}\left(x+1,\frac{xy}{x+1}\right) = \sum_{\mu \in \mathsf{Dyck}(\nu)} (x+1)^{\mathsf{val}(\mu) - \mathsf{ret}(\mu)} (xy)^{\mathsf{ret}(\mu)}$$

Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle

Proposition (🌋 & E. Tzanaki, 2022)

$$\mathcal{P}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1,\frac{xy}{x+1}\right)$$

$$\begin{aligned} \mathcal{H}_{\nu}\left(x+1,\frac{xy}{x+1}\right) &= \sum_{\substack{\mu \in \mathsf{Dyck}(\nu) \\ \\ = \sum_{\substack{(\mu,V) \in \mathsf{Asso}(\nu) \\ V = V_1 \uplus V_2}} x^{|V_1| + \mathsf{ret}(\mu)} y^{\mathsf{ret}(\mu)} \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle

Proposition (🌋 & E. Tzanaki, 2022)

$$\mathcal{P}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1,\frac{xy}{x+1}\right)$$

$$\begin{aligned} \mathcal{H}_{\nu}\left(x+1,\frac{xy}{x+1}\right) &= \sum_{\mu\in\mathsf{Dyck}(\nu)} (x+1)^{\mathsf{val}(\mu)-\mathsf{ret}(\mu)} (xy)^{\mathsf{ret}(\mu)} \\ &= \sum_{\substack{(\mu,V)\in\mathsf{Asso}(\nu)\\V=V_1 \uplus V_2}} x^{|V_1|+\mathsf{ret}(\mu)} y^{\mathsf{ret}(\mu)} \\ &= \sum_{S\in\mathsf{Schröder}_+(\nu)} x^{\mathsf{dg}(S)} y^{\mathsf{ret}(S)} \end{aligned}$$

Chapoton's Triangles, Lattice Paths and Reciprocity Henri Mühle

Proposition (🌋 & E. Tzanaki, 2022)

$$\mathcal{P}_{\nu}(x,y) = \mathcal{H}_{\nu}\left(x+1,\frac{xy}{x+1}\right)$$

$$\begin{split} \mathcal{H}_{\nu}\left(x+1,\frac{xy}{x+1}\right) &= \sum_{\mu\in\mathsf{Dyck}(\nu)} (x+1)^{\mathsf{val}(\mu)-\mathsf{ret}(\mu)} (xy)^{\mathsf{ret}(\mu)} \\ &= \sum_{\substack{(\mu,V)\in\mathsf{Asso}(\nu)\\V=V_1 \uplus V_2}} x^{|V_1|+\mathsf{ret}(\mu)} y^{\mathsf{ret}(\mu)} \\ &= \sum_{S\in\mathsf{Schröder}_+(\nu)} x^{\mathsf{dg}(S)} y^{\mathsf{ret}(S)} = \mathcal{P}_{\nu}(x,y) \end{split}$$