Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Connectivity Properties of Factorization Posets

Henri Mühle

Institut für Algebra (TU Dresden)

July 05, 2021

Oberseminar "Arrangements and Symmetries", Ruhr-Universität Bochum

(joint work with Vivien Ripoll)

Outline

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

2 Hurwitz Action

3 Connectivity

Outline

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

1 Generated Groups

Hurwitz Action

³ Connectivity

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • *G* .. group; $A \subseteq G$.. generating set; ℓ_A .. word length

$$G = \left\langle r, s, t \mid r^2 = s^3 = t^3 = \mathbb{1}, t = rs \right\rangle_{\text{grp}}$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

• *G* .. group; $A \subseteq G$.. generating set; ℓ_A .. word length

Solution

$$G = \left\langle r, s, t \mid r^2 = s^3 = t^3 = \mathbb{1}, t = rs \right\rangle_{\text{grp}}$$

Connectivity Properties of Factorization Posets

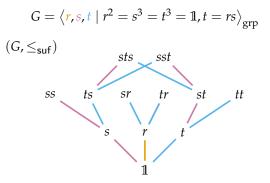
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph *G* .. group; *A* ⊆ *G* .. generating set; *ℓ*_A .. word length *A* suffix-order: *u* ≤_{suf} *v* if and only if *ℓ*_A(*vu*⁻¹) + *ℓ*_A(*u*) = *ℓ*_A(*v*)



Connectivity Properties of Factorization Posets

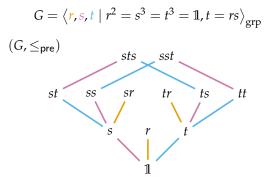
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph *G*.. group; *A* ⊆ *G*.. generating set; *ℓ*_A.. word length *A* prefix-order: *u* ≤_{pre} *v* if and only if *ℓ*_A(*u*) + *ℓ*_A(*u*⁻¹*v*) = *ℓ*_A(*v*)



Connectivity Properties of Factorization Posets

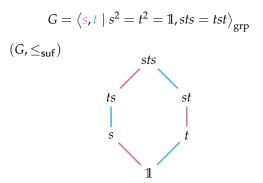
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph G.. group; A ⊆ G.. generating set; ℓ_A.. word length
A = A⁻¹: (G, ≤_{suf}) ≅ (G, ≤_{pre})



Connectivity Properties of Factorization Posets

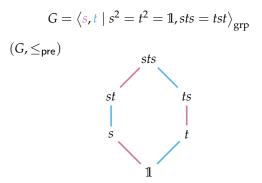
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph G.. group; A ⊆ G.. generating set; ℓ_A.. word length
A = A⁻¹: (G, ≤_{suf}) ≅ (G, ≤_{pre})



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph G.. group; A ⊆ G.. generating set; ℓ_A.. word length
A = GAG⁻¹: (G, ≤_{suf}) = (G, ≤_{pre})

$$G = \left\langle r, s, t \mid r^2 = s^2 = t^2 = 1, rs = st = tr \right\rangle_{\text{grp}}$$
$$(G, \leq_{\text{suf}})$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph G.. group; A ⊆ G.. generating set; ℓ_A.. word length
A = GAG⁻¹: (G, ≤_{suf}) = (G, ≤_{pre})

$$G = \left\langle r, s, t \mid r^2 = s^2 = t^2 = 1, rs = st = tr \right\rangle_{\text{grp}}$$
$$(G, \leq_{\text{pre}})$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • *G* .. group; $A \subseteq G$.. generating set; ℓ_A .. word length • $A = GAG^{-1}$: $(G, \leq_{suf}) = (G, \leq_{pre}) \longrightarrow$ absolute order

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • $A = GAG^{-1}; g \in G$

• factorization poset: interval [1, g] in $(G, \leq_{pre}) \rightsquigarrow \mathbf{P}_A(g)$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $A = GAG^{-1}; g \in G$
- factorization poset: interval [1, g] in $(G, \leq_{pre}) \rightsquigarrow \mathbf{P}_A(g)$

$$G = \langle \mathbf{r}, \mathbf{s}, \mathbf{t} \mid \mathbf{r}^2 = \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{e}, \mathbf{rs} = \mathbf{st} = \mathbf{tr} \rangle_{\text{grp}}$$

$$(G, \leq_{\text{pre}})$$

$$sr rs$$

$$rs$$

$$1$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $A = GAG^{-1}; g \in G$
- factorization poset: interval $[\mathbb{1},g]$ in $(G,\leq_{\mathsf{pre}}) \rightsquigarrow \mathbf{P}_A(g)$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

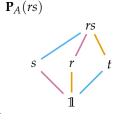
Hurwitz Action

Connectivity

The Cycle Graph • $A = GAG^{-1}; g \in G$

factorization poset: interval [1, g] in (G, ≤_{pre}) → P_A(g)
maximal chains in P_A(g) are in bijection with *A*-reduced words for g → Red_A(g)

$$G = \left\langle \mathbf{r}, \mathbf{s}, t \mid r^2 = s^2 = t^2 = e, rs = st = tr \right\rangle_{\text{grp}}$$



 $\operatorname{Red}_A(rs) = \{$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

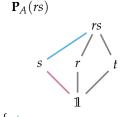
Hurwitz Action

Connectivity

The Cycle Graph • $A = GAG^{-1}; g \in G$

factorization poset: interval [1, g] in (G, ≤_{pre}) → P_A(g)
maximal chains in P_A(g) are in bijection with *A*-reduced words for g → Red_A(g)

$$G = \left\langle \mathbf{r}, \mathbf{s}, t \mid r^2 = s^2 = t^2 = e, rs = st = tr \right\rangle_{\text{grp}}$$



 $\operatorname{Red}_A(rs) = \{ st \}$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

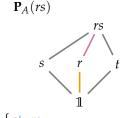
Hurwitz Action

Connectivity

The Cycle Graph • $A = GAG^{-1}; g \in G$

factorization poset: interval [1, g] in (G, ≤_{pre}) → P_A(g)
maximal chains in P_A(g) are in bijection with *A*-reduced words for g → Red_A(g)

$$G = \left\langle \mathbf{r}, \mathbf{s}, t \mid r^2 = s^2 = t^2 = e, rs = st = tr \right\rangle_{\text{grp}}$$



 $\operatorname{Red}_A(rs) = \{ st, rs \}$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

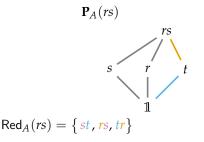
Hurwitz Action

Connectivity

The Cycle Graph • $A = GAG^{-1}; g \in G$

factorization poset: interval [1, g] in (G, ≤_{pre}) → P_A(g)
maximal chains in P_A(g) are in bijection with *A*-reduced words for g → Red_A(g)

$$G = \left\langle \mathbf{r}, \mathbf{s}, t \mid \mathbf{r}^2 = \mathbf{s}^2 = t^2 = \mathbf{e}, \mathbf{rs} = \mathbf{s}t = \mathbf{t}r \right\rangle_{\text{grp}}$$



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • $A = GAG^{-1}; g \in G$

• factorization poset: interval $[\mathbb{1}, g]$ in $(G, \leq_{\mathsf{pre}}) \rightsquigarrow \mathbf{P}_A(g)$

Lemma (A. Björner, 1984)

For $u \leq_{pre} v \leq_{pre} g$, the interval [u, v] in $\mathbf{P}_A(g)$ is isomorphic to $\mathbf{P}_A(u^{-1}v)$.

Outline

1

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

3 Connectivity

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

•
$$[k] \stackrel{\text{def}}{=} \{1, 2, \dots, k\} \text{ for } k > 0$$

$$\mathfrak{B}_{k} = \left\langle \sigma_{1}, \dots, \sigma_{k-1} \mid \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \text{ for } i \in [k-2], \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \text{ if } |i-j| > 1 \right\rangle_{\text{grp}}$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • $[k] \stackrel{\mathsf{def}}{=} \{1, 2, \dots, k\} \text{ for } k > 0$

$$\mathfrak{B}_{k} = \left\langle \sigma_{1}, \dots, \sigma_{k-1} \mid \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \text{ for } i \in [k-2], \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \text{ if } |i-j| > 1 \right\rangle_{\text{grp}}$$

$$\sigma_1 = \overset{\sim}{\underset{\sim}{\sim}}$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

•
$$[k] \stackrel{\mathsf{def}}{=} \{1, 2, \dots, k\} \text{ for } k > 0$$

$$\mathfrak{B}_{k} = \left\langle \sigma_{1}, \dots, \sigma_{k-1} \mid \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \text{ for } i \in [k-2], \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \text{ if } |i-j| > 1 \right\rangle_{\text{grp}}$$

$$\sigma_1 \sigma_2 =$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

•
$$[k] \stackrel{\mathsf{def}}{=} \{1, 2, \dots, k\} \text{ for } k > 0$$

$$\mathfrak{B}_{k} = \left\langle \sigma_{1}, \dots, \sigma_{k-1} \mid \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \text{ for } i \in [k-2], \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \text{ if } |i-j| > 1 \right\rangle_{\text{grp}}$$

$$\sigma_1 \sigma_2 \sigma_1 =$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

•
$$[k] \stackrel{\text{def}}{=} \{1, 2, \dots, k\} \text{ for } k > 0$$

$$\mathfrak{B}_{k} = \left\langle \sigma_{1}, \dots, \sigma_{k-1} \mid \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \text{ for } i \in [k-2], \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \text{ if } |i-j| > 1 \right\rangle_{\text{grp}}$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

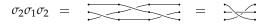
Hurwitz Action

Connectivity

The Cycle Graph

•
$$[k] \stackrel{\text{def}}{=} \{1, 2, \dots, k\} \text{ for } k > 0$$

$$\mathfrak{B}_{k} = \left\langle \sigma_{1}, \dots, \sigma_{k-1} \mid \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \text{ for } i \in [k-2], \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \text{ if } |i-j| > 1 \right\rangle_{\text{grp}}$$



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph A ⊆ G; A^(k) .. words of length k over A
Hurwitz action: σ_i acts on A^(k) by

$$(a_1, a_2, \ldots, a_{i-1}, a_i, a_{i+1}, a_{i+2}, \ldots, a_k)$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph A ⊆ G; A^(k) ... words of length k over A
Hurwitz action: σ_i acts on A^(k) by

$$\sigma_i \cdot (a_1, a_2, \ldots, a_{i-1}, a_i, a_{i+1}, a_{i+2}, \ldots, a_k)$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph A ⊆ G; A^(k) .. words of length k over A
Hurwitz action: σ_i acts on A^(k) by

$$= (a_1, a_2, \ldots, a_{i-1}, a_{i+1}, a_{i+1}^{-1}, a_{i+1}^{-1}, a_{i+2}, \ldots, a_k)$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $A \subseteq G$; $A^{(k)}$.. words of length k over A
- Hurwitz action: σ_i acts on $A^{(k)}$

Observation (Folklore)

If A is closed under G-conjugation, then the Hurwitz action extends to a group action of \mathfrak{B}_k on $A^{(k)}$.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $A \subseteq G$... generating set; $g \in G$
- Hurwitz action: σ_i acts on $\operatorname{Red}_A(g)$

Observation (Folklore)

If A is closed under G-conjugation, then the Hurwitz action preserves $\text{Red}_A(g)$ for any $g \in G$.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $A \subseteq G$.. generating set; $g \in G$
- **Hurwitz action**: σ_i acts on $\operatorname{Red}_A(g)$
- Hurwitz-transitive: Hurwitz action has a single orbit

Observation (Folklore)

If A is closed under G-conjugation, then the Hurwitz action preserves $\text{Red}_A(g)$ for any $g \in G$.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

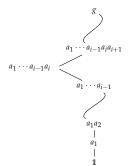
Hurwitz Action

Connectivity

The Cycle Graph

- $A \subseteq G$.. generating set; $g \in G$
- **Hurwitz action**: σ_i acts on $\operatorname{Red}_A(g)$
- Hurwitz-transitive: Hurwitz action has a single orbit

 $g = a_1 \cdots a_{i-1} a_i a_{i+1} a_{i+2} \cdots a_k$



Connectivity Properties of Factorization Posets

Henri Mühle

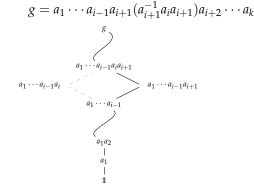
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $A \subseteq G$.. generating set; $g \in G$
- Hurwitz action: σ_i acts on $\operatorname{Red}_A(g)$
- Hurwitz-transitive: Hurwitz action has a single orbit



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $A \subseteq G$.. generating set; $g \in G$
- **Hurwitz action**: σ_i acts on $\operatorname{Red}_A(g)$
- Hurwitz-transitive: Hurwitz action has a single orbit

Observation (🎖 & V. Ripoll, 2020)

The number of orbits of the Hurwitz action on $\text{Red}_A(g)$ can be seen as a "connectivity coefficient" of $\mathbf{P}_A(g)$.

Hurwitz Action

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $A \subseteq G$.. generating set; $g \in G$
- **Hurwitz action**: σ_i acts on $\operatorname{Red}_A(g)$
- Hurwitz-connected: Hurwitz action has a single orbit

Observation (🎖 & V. Ripoll, 2020)

The number of orbits of the Hurwitz action on $\text{Red}_A(g)$ can be seen as a "connectivity coefficient" of $\mathbf{P}_A(g)$.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • origin: Hurwitz' enumeration of branched coverings of a Riemann surface (1891)

$$\rightsquigarrow G = \mathfrak{S}_n, A = \{(ij) \mid 1 \leq i < j \leq n\}, g = (1 \ 2 \ \dots \ n)$$

Connectivity Properties of Factorization Posets

Henri Mühle

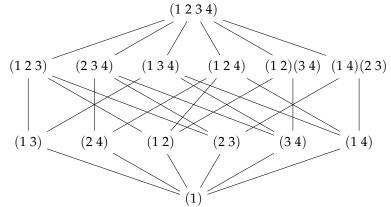
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • origin: Hurwitz' enumeration of branched coverings of a Riemann surface (1891)

$$\rightsquigarrow G = \mathfrak{S}_n, A = \{(ij) \mid 1 \leq i < j \leq n\}, g = (1 \ 2 \ \dots \ n)$$



Connectivity Properties of Factorization Posets

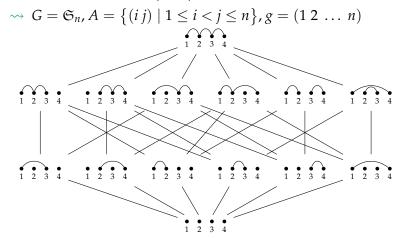
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • origin: Hurwitz' enumeration of branched coverings of a Riemann surface (1891)



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- W .. well-generated complex reflection group
- *T* .. set of *all* reflections of *W*
- *c* .. Coxeter element of *W*

Theorem (P. Deligne, 1974; D. Bessis & R. Corran, 2006; D. Bessis, 2006 (2015))

For any well-generated complex reflection group W and any Coxeter element $c \in W$, the braid group $\mathfrak{B}_{\ell_T(c)}$ acts transitively on $\operatorname{Red}_T(c)$.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- W .. well-generated complex reflection group
- *T* .. set of *all* reflections of *W*
- *c* .. Coxeter element of *W*
- → *c*-noncrossing *W*-partitions: elements of $P_T(c)$ → Nonc(*W*, *c*)

Theorem (P. Deligne, 1974; D. Bessis & R. Corran, 2006; D. Bessis, 2006 (2015))

For any well-generated complex reflection group W and any Coxeter element $c \in W$, the braid group $\mathfrak{B}_{\ell_T(c)}$ acts transitively on $\operatorname{Red}_T(c)$.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

• $\mathfrak{B}_{\ell_T(g)}$ does not act transitively on *any* $g \in W$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph 𝔅 𝔥_{ℓ_T(g)} does not act transitively on *any* g ∈ W
e.g.: W = B₂, g = 1 2

Connectivity Properties of Factorization Posets

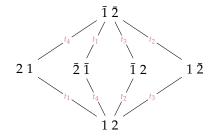
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph 𝔅 𝔥_{ℓ_T(g)} does not act transitively on *any* g ∈ W
e.g.: W = B₂, g = 1̄ 2̄



Connectivity Properties of Factorization Posets

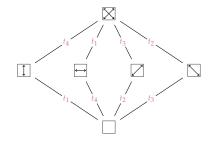
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph 𝔅 𝔥_{ℓ_T(g)} does not act transitively on *any* g ∈ W
e.g.: W = Sym(□), g = ⊠



Connectivity Properties of Factorization Posets

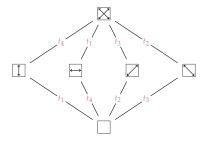
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph 𝔅 𝔥_{ℓ_T(g)} does not act transitively on *any* g ∈ W
e.g.: W = Sym(□), g = ⊠



 $\boxtimes = t_1 t_4 = t_4 t_1 = t_2 t_3 = t_3 t_2$

Connectivity Properties of Factorization Posets

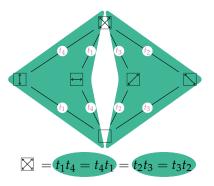
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph 𝔅 𝔥_{ℓ_T(g)} does not act transitively on *any* g ∈ W
e.g.: W = Sym(□), g = ⊠



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • **quasi-Coxeter element**: exists $(a_1, a_2, ..., a_n) \in \text{Red}_T(g)$ such that $W = \langle a_1, a_2, ..., a_n \rangle$

Theorem (B. Baumeister, T. Gobet, K. Roberts & P. Wegener, 2017)

Let W be a finite real reflection group. Then $\mathfrak{B}_{\ell_T(g)}$ acts transitively on $\operatorname{Red}_T(g)$ if and only if there exists a parabolic subgroup W' of W for which g is a quasi-Coxeter element.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • **quasi-Coxeter element**: exists $(a_1, a_2, ..., a_n) \in \text{Red}_T(g)$ such that $W = \langle a_1, a_2, ..., a_n \rangle$

Theorem (B. Baumeister, T. Gobet, K. Roberts & P. Wegener, 2017)

Let W be a finite real reflection group. Then $\mathfrak{B}_{\ell_T(g)}$ acts transitively on $\operatorname{Red}_T(g)$ if and only if there exists a parabolic subgroup W' of W for which g is a quasi-Coxeter element.

 \rightsquigarrow extension to complex reflection groups by J. Lewis and J. Wang (2021)

Other Results

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

• conditions for Hurwitz-equivalence

T. Ben-Itzhak & M. Teicher (2003); X. Hou (2008); C. Sia (2009); E. Berger (2011); J. Lewis (2020)

• computation of braid monodromy

E. Brieskorn (1988); A. Libgober (1999); V. Kulikov & M. Teicher (2000)

• Hurwitz action in finitely-generated real reflection groups

B. Baumeister, M. Dyer, C. Stump & P. Wegener (2014); P. Wegener (2020)

• subgroups of the symmetric group generated by *k*-cycles

💑 & P. Nadeau (2019); 💑 , P. Nadeau & N. Williams (2020)

\cap	+l	lin	~
U	uu	ш	e

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Hurwitz Action

3 Connectivity

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • Hurwitz graph: $\mathscr{H}(g) \stackrel{\text{def}}{=} (\operatorname{Red}_A(g), \mathscr{HE}(g))$, where $\mathscr{HE}(g) \stackrel{\text{def}}{=} \{ (\mathbf{g}, \mathbf{g}') \mid \mathbf{g}' = \sigma_i^{\pm 1} \cdot \mathbf{g} \text{ for some } i \in [\ell_A(g) - 1] \}$

Connectivity Properties of Factorization Posets

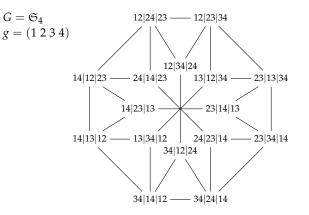
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • Hurwitz graph: $\mathscr{H}(g) \stackrel{\text{def}}{=} (\operatorname{Red}_A(g), \mathscr{HE}(g))$, where $\mathscr{HE}(g) \stackrel{\text{def}}{=} \{ (\mathbf{g}, \mathbf{g}') \mid \mathbf{g}' = \sigma_i^{\pm 1} \cdot \mathbf{g} \text{ for some } i \in [\ell_A(g) - 1] \}$



Connectivity Properties of Factorization Posets

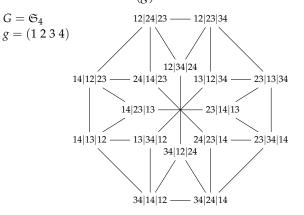
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph Hurwitz graph: ℋ(g) ^{def} = (Red_A(g), ℋE(g)), where
 ℋE(g) ^{def} = {(g,g') | g' = σ_i^{±1} ⋅ g for some i ∈ [ℓ_A(g) − 1]}
 Hurwitz-connected: ℋ(g) is connected



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • $\operatorname{Red}_A(g)$ is in bijection with the maximal chains of $\mathbf{P}_A(g)$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- Red_A(g) is in bijection with the maximal chains of P_A(g)
 (g, g') ∈ ℋ𝔅(g) implies that the corresponding chains
 - $(\mathbf{g}, \mathbf{g}) \in \mathcal{R} \otimes (g)$ implies that the corresponding char differ in one element

Connectivity Properties of Factorization Posets

Henri Mühle

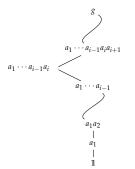
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph Red_A(g) is in bijection with the maximal chains of P_A(g)
 (g, g') ∈ ℋ𝔅(g) implies that the corresponding chains differ in one element

 $g = a_1 \cdots a_{i-1} a_i a_{i+1} a_{i+2} \cdots a_k$



Connectivity Properties of Factorization Posets

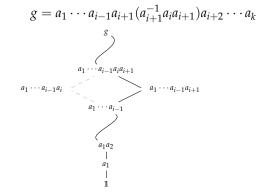
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph Red_A(g) is in bijection with the maximal chains of P_A(g)
(g, g') ∈ ℋ𝔅(g) implies that the corresponding chains differ in one element



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

P = (P, ≤) .. (finite) graded poset with bounds 0 and 1 and rank k

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- **P** = (*P*, ≤) .. (finite) graded poset with bounds 0̂ and 1̂ and rank *k*
- maximal chain: maximal subset of pairwise comparable elements $\rightsquigarrow \mathcal{M}(\mathbf{P})$
- chain graph: $\mathscr{C}(\mathbf{P}) \stackrel{\text{def}}{=} (\mathscr{M}(\mathbf{P}), \mathscr{C}(\mathbf{P}))$, where $\mathscr{C}(\mathbf{P}) \stackrel{\text{def}}{=} \{ (C, C') \mid |C \cap C'| = k \}$

Connectivity Properties of Factorization Posets

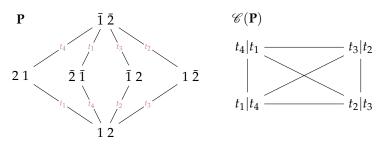
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- **P** = (*P*, ≤) .. (finite) graded poset with bounds 0̂ and 1̂ and rank *k*
- maximal chain: maximal subset of pairwise comparable elements $\rightsquigarrow \mathcal{M}(\mathbf{P})$
- chain graph: $\mathscr{C}(\mathbf{P}) \stackrel{\text{def}}{=} (\mathscr{M}(\mathbf{P}), \mathscr{CE}(\mathbf{P}))$, where $\mathscr{CE}(\mathbf{P}) \stackrel{\text{def}}{=} \{(C, C') \mid |C \cap C'| = k\}$



Connectivity Properties of Factorization Posets

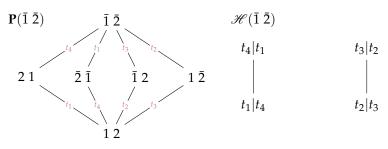
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- **P** = (*P*, ≤) .. (finite) graded poset with bounds 0̂ and 1̂ and rank *k*
- maximal chain: maximal subset of pairwise comparable elements $\rightsquigarrow \mathcal{M}(\mathbf{P})$
- chain graph: $\mathscr{C}(\mathbf{P}) \stackrel{\text{def}}{=} (\mathscr{M}(\mathbf{P}), \mathscr{C}\mathscr{E}(\mathbf{P}))$, where $\mathscr{C}\mathscr{E}(\mathbf{P}) \stackrel{\text{def}}{=} \{(C, C') \mid |C \cap C'| = k\}$



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- **P** = (*P*, ≤) .. (finite) graded poset with bounds 0 and 1 and rank *k*
- **chain connected**: $\mathscr{C}(\mathbf{P})$ is connected

Proposition (🌋 & V. Ripoll, 2020)

If $\mathbf{P}_A(g)$ is Hurwitz-connected, then it is chain connected.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- shelling: total order \prec on $\mathcal{M}(\mathbf{P})$ such that whenever $M \prec M'$, then there is $N \prec M'$ and $x \in M'$ such that $M \cap M' \subseteq N \cap M' = M' \setminus \{x\}$
- **shellable**: admits shelling of $\mathcal{M}(\mathbf{P})$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- shelling: total order \prec on $\mathcal{M}(\mathbf{P})$ such that whenever $M \prec M'$, then there is $N \prec M'$ and $x \in M'$ such that $M \cap M' \subseteq N \cap M' = M' \setminus \{x\}$
- **shellable**: admits shelling of $\mathcal{M}(\mathbf{P})$

$$C_1 = \{\hat{0}, a, c, \hat{1}\} \\ C_2 = \{\hat{0}, b, d, \hat{1}\}$$

 $\rightsquigarrow C_1 \cap C_2 = C_2 \setminus \{b, d\}$

no

Connectivity Properties of Factorization Posets

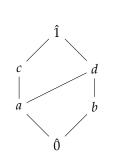
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- shelling: total order \prec on $\mathscr{M}(\mathbf{P})$ such that whenever $M \prec M'$, then there is $N \prec M'$ and $x \in M'$ such that $M \cap M' \subseteq N \cap M' = M' \setminus \{x\}$
- **shellable**: admits shelling of $\mathcal{M}(\mathbf{P})$



$$C_{1} = \{\hat{0}, a, c, \hat{1}\}$$

$$C_{2} = \{\hat{0}, a, d, \hat{1}\}$$

$$C_{3} = \{\hat{0}, b, d, \hat{1}\}$$

$$\rightsquigarrow C_{1} \cap C_{2} = C_{2} \setminus \{d\}$$

$$C_{2} \cap C_{3} = C_{3} \setminus \{b\} \quad \text{yes}$$

$$C_{1} \cap C_{3} \subseteq C_{2} \cap C_{3}$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- **shelling**: total order \prec on $\mathcal{M}(\mathbf{P})$ such that whenever $M \prec M'$, then there is $N \prec M'$ and $x \in M'$ such that $M \cap M' \subseteq N \cap M' = M' \setminus \{x\}$
- **shellable**: admits shelling of $\mathcal{M}(\mathbf{P})$

Proposition (🎖 & V. Ripoll, 2020)

Every shellable poset is chain connected.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- **EL-labeling**: edge-labeling such that for each interval the lexicographically smallest chain is uniquely rising
- EL-shellable: poset that admits an EL-labeling

Connectivity Properties of Factorization Posets

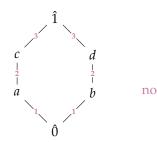
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- **EL-labeling**: edge-labeling such that for each interval the lexicographically smallest chain is uniquely rising
- EL-shellable: poset that admits an EL-labeling



Connectivity Properties of Factorization Posets

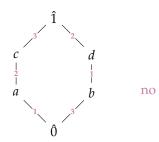
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- **EL-labeling**: edge-labeling such that for each interval the lexicographically smallest chain is uniquely rising
- EL-shellable: poset that admits an EL-labeling



Connectivity Properties of Factorization Posets

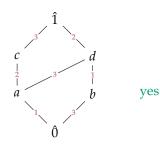
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- **EL-labeling**: edge-labeling such that for each interval the lexicographically smallest chain is uniquely rising
- EL-shellable: poset that admits an EL-labeling



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- **EL-labeling**: edge-labeling such that for each interval the lexicographically smallest chain is uniquely rising
- EL-shellable: poset that admits an EL-labeling

Proposition (A. Björner, 1980)

Every EL-shellable poset is shellable.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

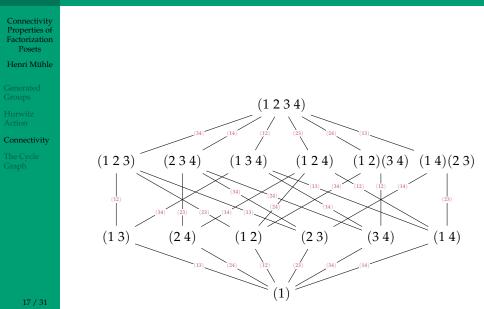
Connectivity

The Cycle Graph

- $\mathbf{P} = (P, \leq)$.. (finite) graded poset with bounds $\hat{0}$ and $\hat{1}$
- **EL-labeling**: edge-labeling such that for each interval the lexicographically smallest chain is uniquely rising
- EL-shellable: poset that admits an EL-labeling

Observation ()

Any factorization poset $\mathbf{P}_A(g)$ admits a canonical edge labeling given by $\lambda_g(u, v) \stackrel{\text{def}}{=} u^{-1}v \in A$.



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

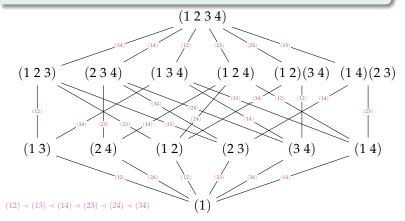
Hurwitz Action

Connectivity

The Cycle Graph

Proposition (A. Björner & P. Edelman, 1980)

For n > 0, the lexicographic order on transpositions makes λ_c an *EL-labeling of* **Nonc**(\mathfrak{S}_n, c), where $c = (1 \ 2 \ \dots \ n)$.



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

•
$$A_g \stackrel{\mathsf{def}}{=} \{a \in A \mid a \leq_{\mathsf{pre}} g\}$$

$$\rightsquigarrow \operatorname{\mathsf{Red}}_A(g) = \operatorname{\mathsf{Red}}_{A_g}(g)$$

• fix a total order \prec of A_g

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- $\bullet \ A_g \stackrel{\mathrm{def}}{=} \{a \in A \mid a \leq_{\mathsf{pre}} g\} \qquad \rightsquigarrow \mathsf{Red}_A(g) = \mathsf{Red}_{A_g}(g)$
- fix a total order \prec of A_g
- \prec -rising factorization: $(a_1, a_2, \dots, a_n) \in \operatorname{Red}_A(g)$ with $a_1 \leq a_2 \leq \dots \leq a_n$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $\bullet \ A_g \stackrel{\mathsf{def}}{=} \{a \in A \mid a \leq_{\mathsf{pre}} g\} \qquad \rightsquigarrow \mathsf{Red}_A(g) = \mathsf{Red}_{A_g}(g)$
- fix a total order \prec of A_g
- \prec -rising factorization: $(a_1, a_2, \dots, a_n) \in \operatorname{Red}_A(g)$ with $a_1 \leq a_2 \leq \dots \leq a_n$

Definition (X & V. Ripoll, 2020)

A total order of A_g is *g*-compatible if every $h \leq_{pre} g$ with $\ell_A(h) = 2$ has a unique \prec -rising factorization.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- $\bullet \ A_g \stackrel{\mathsf{def}}{=} \{a \in A \mid a \leq_{\mathsf{pre}} g\} \qquad \rightsquigarrow \mathsf{Red}_A(g) = \mathsf{Red}_{A_g}(g)$
- fix a total order \prec of A_g
- \prec -rising factorization: $(a_1, a_2, \dots, a_n) \in \operatorname{Red}_A(g)$ with $a_1 \leq a_2 \leq \dots \leq a_n$

Definition (X & V. Ripoll, 2020)

A total order of A_g is *g*-compatible if every $h \leq_{pre} g$ with $\ell_A(h) = 2$ has a unique \prec -rising factorization.

 \rightsquigarrow compatibility is a "local" version of EL-shellability

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

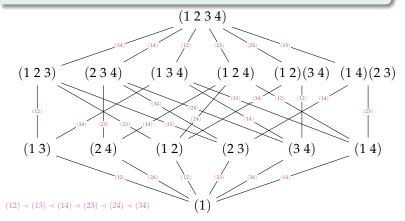
Hurwitz Action

Connectivity

The Cycle Graph

Proposition (A. Björner & P. Edelman, 1980)

For n > 0, the lexicographic order on transpositions makes λ_c an *EL-labeling of* **Nonc**(\mathfrak{S}_n, c), where $c = (1 \ 2 \ \dots \ n)$.



Connectivity Properties of Factorization Posets

Henri Mühle

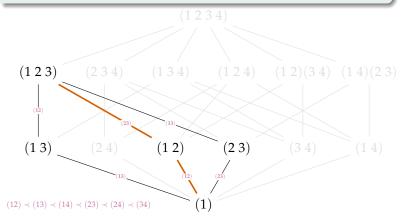
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Corollary (A. Björner & P. Edelman, 1980)



Connectivity Properties of Factorization Posets

Henri Mühle

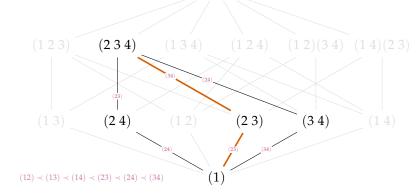
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Corollary (A. Björner & P. Edelman, 1980)



Connectivity Properties of Factorization Posets

Henri Mühle

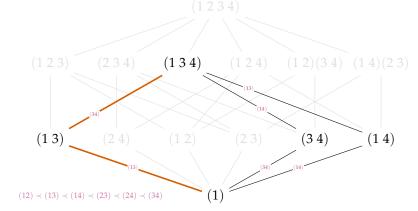
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Corollary (A. Björner & P. Edelman, 1980)



Connectivity Properties of Factorization Posets

Henri Mühle

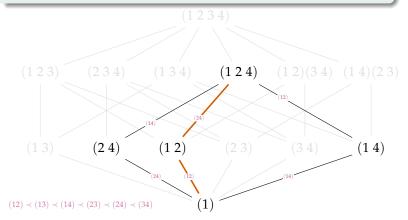
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Corollary (A. Björner & P. Edelman, 1980)



Connectivity Properties of Factorization Posets

Henri Mühle

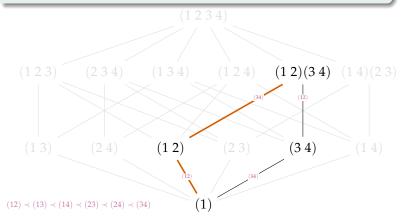
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Corollary (A. Björner & P. Edelman, 1980)



Connectivity Properties of Factorization Posets

Henri Mühle

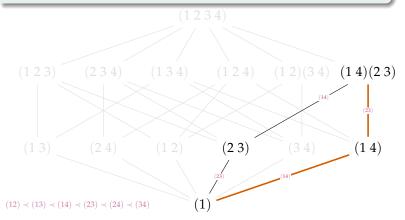
Generated Groups

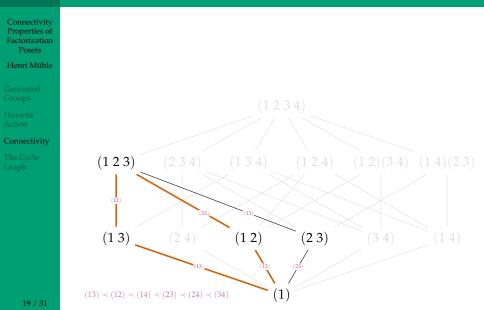
Hurwitz Action

Connectivity

The Cycle Graph

Corollary (A. Björner & P. Edelman, 1980)





Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Theorem (C. Athanasiadis, T. Brady & C. Watt, 2007; **%**, 2015)

For every well-generated complex reflection group W and every Coxeter element $c \in W$, the set of all reflections admits a *c*-compatible order.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Theorem (C. Athanasiadis, T. Brady & C. Watt, 2007; **%**, 2015)

For every well-generated complex reflection group W and every Coxeter element $c \in W$, the set of all reflections admits a *c*-compatible order.

 \leadsto crucial component in the proof of the EL-shellability

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Conjecture (🎸 & V. Ripoll, 2020)

If $\operatorname{Red}_A(g)$ is finite, every interval of $\mathbf{P}_A(g)$ is chain connected and A_g admits a g-compatible generator order, then λ_g is an EL-labeling.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Lemma (🌋 & V. Ripoll, 2020)

Suppose that $\ell_A(g) = 2$. There exists a g-compatible order of A_g if and only if $\mathbf{P}_A(g)$ is Hurwitz-connected.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Lemma (🌋 & V. Ripoll, 2020)

Suppose that $\ell_A(g) = 2$. There exists a g-compatible order of A_g if and only if $\mathbf{P}_A(g)$ is Hurwitz-connected.

 \rightsquigarrow does not extend to $\ell_A(g) > 2$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Theorem (🏅 & V. Ripoll, 2020)

If $\operatorname{Red}_A(g)$ is finite, $\mathbf{P}_A(g)$ is chain connected and A_g admits a *g*-compatible generator order, then $\mathbf{P}_A(g)$ is Hurwitz-connected.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Theorem (🕈 & V. Ripoll, 2020)

If $\operatorname{Red}_A(g)$ is finite, $\mathbf{P}_A(g)$ is chain connected and A_g admits a *g*-compatible generator order, then $\mathbf{P}_A(g)$ is Hurwitz-connected.

Corollary (🕉 & V. Ripoll, 2020)

If $\operatorname{Red}_A(g)$ is finite and λ_g is an EL-labeling, then $\mathbf{P}_A(g)$ is Hurwitz-connected.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

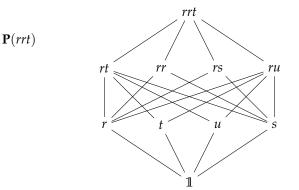
Hurwitz Action

Connectivity

The Cycle Graph • Hurwitz-transitivity does not necessarily imply rank-2 Hurwitz-transitivity

$$G = \langle r, s, t, u \mid r^2 = s^2, t^2 = u^2, rs = sr, tu = ut,$$

$$rt = ts = su = ur, st = tr = ru = us \rangle_{grp}$$



21 / 31

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

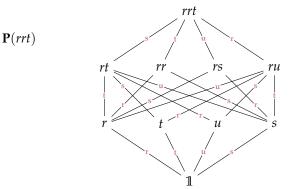
Hurwitz Action

Connectivity

The Cycle Graph • Hurwitz-transitivity does not necessarily imply rank-2 Hurwitz-transitivity

$$G = \langle r, s, t, u \mid r^2 = s^2, t^2 = u^2, rs = sr, tu = ut,$$

$$rt = ts = su = ur, st = tr = ru = us \rangle_{grp}$$



21 / 31

Connectivity Properties of Factorization Posets

Henri Mühle

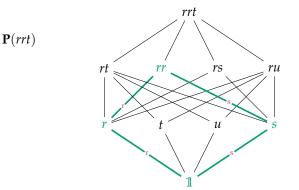
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • Hurwitz-transitivity does not necessarily imply rank-2 Hurwitz-transitivity

$$G = \langle r, s, t, u \mid r^2 = s^2, t^2 = u^2, rs = sr, tu = ut, rt = ts = su = ur, st = tr = ru = us \rangle_{grp}$$



21 / 31

Connectivity Properties of Factorization Posets

Henri Mühle

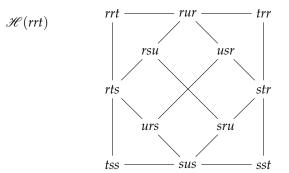
Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • Hurwitz-transitivity does not necessarily imply rank-2 Hurwitz-transitivity

$$G = \langle r, s, t, u \mid r^2 = s^2, t^2 = u^2, rs = sr, tu = ut, rt = ts = su = ur, st = tr = ru = us \rangle_{grp}$$



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

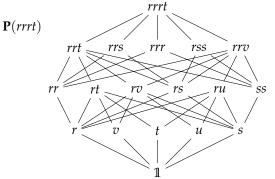
Hurwitz Action

Connectivity

The Cycle Graph

• Hurwitz-transitivity does not necessarily imply shellability

$$G = \langle r, s, t, u, v \mid r^3 = s^3, t^2 = u^2 = v^2, rs = sr, tu = uv = vt,$$
$$ut = tv = vu, rt = ts = sv = vr, rv = vs = su = ur,$$
$$ru = us = st = tr \rangle_{grp}$$



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

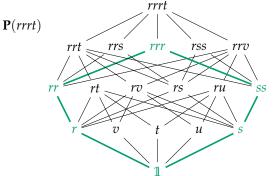
Hurwitz Action

Connectivity

The Cycle Graph

• Hurwitz-transitivity does not necessarily imply shellability

$$G = \langle r, s, t, u, v \mid r^3 = s^3, t^2 = u^2 = v^2, rs = sr, tu = uv = vt,$$
$$ut = tv = vu, rt = ts = sv = vr, rv = vs = su = ur,$$
$$ru = us = st = tr \rangle_{grp}$$



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • Hurwitz-transitivity does not necessarily imply shellability

$$G = \langle r, s, t, u, v | r^{3} = s^{3}, t^{2} = u^{2} = v^{2}, rs = sr, tu = uv = vt,$$

$$ut = tv = vu, rt = ts = sv = vr, rv = vs = su = ur,$$

$$ru = us = st = tr \rangle_{grp}$$

$$\mathscr{H}(rrrt)$$

$$\int_{rurr}^{rurr} \int_{vsrv}^{srur} \int_{vsrv}^{ssrv} \int_{srsu}^{sstr} \int_{ssus}^{sstr} \int_{ssus}^{sstr} \int_{srsu}^{sstr} \int_{srsu}^{strv} \int_{srsu}^{srsu} \int_{srsu}^{strv} \int_{srsu}^{srsu} \int_{srsu}^{strv} \int_{srsu}^{sstr} \int_{srsu}^{sstr} \int_{srsu}^{sstr} \int_{srsu}^{sstr} \int_{srsu}^{strv} \int_{srsu}$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

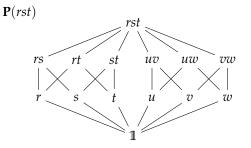
Hurwitz Action

Connectivity

The Cycle Graph

• existence of a compatible order does not necessarily imply shellability

$$G = \langle r, s, t, u, v, w \mid \text{commutations}, rst = uvw \rangle_{\text{grp}}$$



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- fix a total order \prec of A_g
- well covered: if b ∈ A_g is not ≺-minimal, there exists some a ≺ b such that a and b have a common upper cover in P_A(g)

Connectivity Properties of Factorization Posets

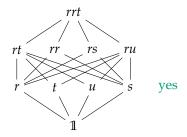
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- fix a total order \prec of A_g
- well covered: if b ∈ A_g is not ≺-minimal, there exists some a ≺ b such that a and b have a common upper cover in P_A(g)



Connectivity Properties of Factorization Posets

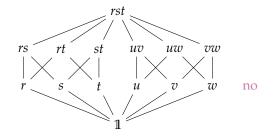
Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

- fix a total order \prec of A_g
- well covered: if b ∈ A_g is not ≺-minimal, there exists some a ≺ b such that a and b have a common upper cover in P_A(g)



Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • fix a total order \prec of A_g

- well covered: if b ∈ A_g is not ≺-minimal, there exists some a ≺ b such that a and b have a common upper cover in P_A(g)
- totally well covered: every interval is well covered

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- fix a total order \prec of A_g
- well covered: if b ∈ A_g is not ≺-minimal, there exists some a ≺ b such that a and b have a common upper cover in P_A(g)
- totally well covered: every interval is well covered

Theorem (🏅 & V. Ripoll, 2020)

Let \prec be a total order of A_g . Then, λ_g is an EL-labeling of $\mathbf{P}_A(g)$ with respect to \prec if and only if \prec is g-compatible and $\mathbf{P}_A(g)$ is totally well covered with respect to \prec .

Well-Covered Factorization Posets

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- fix a total order \prec of A_g
- well covered: if b ∈ A_g is not ≺-minimal, there exists some a ≺ b such that a and b have a common upper cover in P_A(g)
- totally well covered: every interval is well covered

Theorem (🏅 & V. Ripoll, 2020)

Let \prec be a total order of A_g . Then, λ_g is an EL-labeling of $\mathbf{P}_A(g)$ with respect to \prec if and only if \prec is g-compatible and $\mathbf{P}_A(g)$ is totally well covered with respect to \prec .

→ modeled after *recursive atom orders* of A. Björner and M. Wachs (1983)

Well-Covered Factorization Posets

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- fix a total order \prec of A_g
- well covered: if b ∈ A_g is not ≺-minimal, there exists some a ≺ b such that a and b have a common upper cover in P_A(g)
- totally well covered: every interval is well covered

Theorem (🏅 & V. Ripoll, 2020)

If $\operatorname{Red}_A(g)$ is finite and $\mathbf{P}_A(g)$ admits a g-compatible order \prec of A_g and $\mathbf{P}_A(g)$ is totally well covered with respect to \prec , then $\mathbf{P}_A(g)$ is chain connected, Hurwitz-connected and shellable.

Well-Covered Factorization Posets

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- fix a total order \prec of A_g
- well covered: if b ∈ A_g is not ≺-minimal, there exists some a ≺ b such that a and b have a common upper cover in P_A(g)
- totally well covered: every interval is well covered

Conjecture (🎖 & V. Ripoll, 2020)

If every interval of $\mathbf{P}_A(g)$ is chain connected and there exists a *g*-compatible order \prec of A_g , then $\mathbf{P}_A(g)$ is totally well covered with respect to \prec .

\sim	11	•	
Οı	11	1n	ρ
Οt	10		Ľ

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

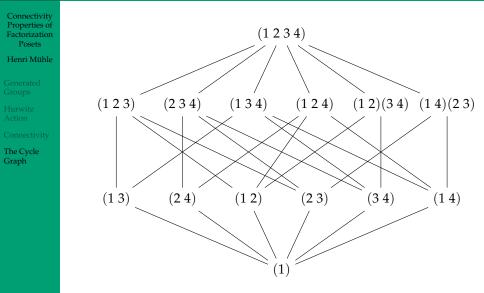
Hurwitz Action

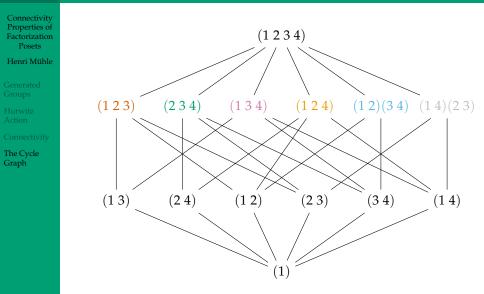
Connectivity

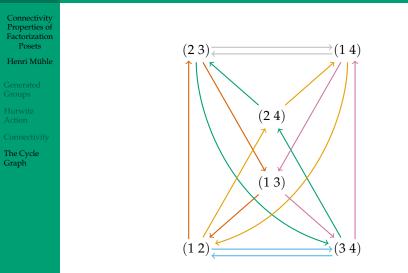
The Cycle Graph

Hurwitz Action

³ Connectivity







Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

• **cycle graph**: labeled directed graph $\Gamma_A(g) \stackrel{\text{def}}{=} (V_g, \vec{E}_g, \sigma_g)$, where:

• $V_g \stackrel{\text{def}}{=} A_g$ • $\vec{E}_{\sigma} \stackrel{\text{def}}{=} \{(a,b) \mid ab \leq_{\text{pre}} g\}$

•
$$L_g = \{(a, b) \mid ab \leq pre$$

• $\sigma((a, b)) \stackrel{\text{def}}{=} ab$

•
$$\sigma_g((a,b)) \stackrel{\text{def}}{=} ab$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph cycle graph: labeled directed graph Γ_A(g) ^{def} = (V_g, *E*_g, σ_g), where:
V_g ^{def} = A_g • *E*_g ^{def} = {(a, b) | ab ≤_{pre} g}

•
$$\sigma_g((a,b)) \stackrel{\mathsf{def}}{=} ab$$

•
$$B_g \stackrel{\text{def}}{=} \{h \in G \mid \ell_A(h) = 2 \text{ and } h \leq_{\text{pre}} g\}$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

1

The Cycle Graph • cycle graph: labeled directed graph $\Gamma_A(g) \stackrel{\text{def}}{=} (V_g, \vec{E}_g, \sigma_g)$, where: • $V_g \stackrel{\text{def}}{=} A_g$

• $\vec{E}_g \stackrel{\text{def}}{=} \{(a,b) \mid ab \in B_g\}$

•
$$\sigma_g((a,b)) \stackrel{\text{def}}{=} ab$$

•
$$B_g \stackrel{\mathsf{def}}{=} \{h \in G \mid \ell_A(h) = 2 \text{ and } h \leq_{\mathsf{pre}} g\}$$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • cycle graph: labeled directed graph $\Gamma_A(g) \stackrel{\text{def}}{=} (V_g, \vec{E}_g, \sigma_g)$, where: • $V_g \stackrel{\text{def}}{=} A_g$ • $\vec{E}_g \stackrel{\text{def}}{=} \{(a, b) \mid ab \in B_g\}$ • $\sigma_g((a, b)) \stackrel{\text{def}}{=} ab$ • $B_g \stackrel{\text{def}}{=} \{h \in G \mid \ell_A(h) = 2 \text{ and } h \leq_{\text{pre}} g\}$

Lemma (🏅 & V. Ripoll, 2020)

For any $h \in B_g$, the set of edges labeled by h in $\Gamma_A(g)$ is a disjoint union of directed cycles. Each such cycle corresponds to a connected component of $\mathscr{H}(h)$.

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

•
$$B_g \stackrel{\text{def}}{=} \{h \in G \mid \ell_A(h) = 2 \text{ and } h \leq_{\text{pre}} g\}$$

 defect: minimal number of edges to be removed so that the remaining graph is acyclic →→ df(g)

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

•
$$B_g \stackrel{\text{def}}{=} \{h \in G \mid \ell_A(h) = 2 \text{ and } h \leq_{\text{pre}} g\}$$

 defect: minimal number of edges to be removed so that the remaining graph is acyclic →→ df(g)

Proposition (X V. Ripoll, 2020)

For any $g \in G$, $df(g) \ge |B_g|$. Moreover, $df(g) = |B_g|$ if and only if $\mathbf{P}_A(g)$ admits a g-compatible order of A_g .

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • fix a *g*-compatible order \prec of A_g

• reduced cycle graph: for every $h \in B_g$ remove the unique \prec -rising factorization of $h \qquad \rightsquigarrow \Gamma_A^{\prec}(g)$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- fix a *g*-compatible order \prec of A_g
- reduced cycle graph: for every $h \in B_g$ remove the unique \prec -rising factorization of $h \qquad \rightsquigarrow \Gamma_A^{\prec}(g)$
- let \rightarrow denote the dual of the order induced by $\Gamma_A^{\prec}(g)$

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- fix a *g*-compatible order \prec of A_g
- reduced cycle graph: for every $h \in B_g$ remove the unique \prec -rising factorization of $h \qquad \rightsquigarrow \Gamma_A^{\prec}(g)$
- let \rightarrow denote the dual of the order induced by $\Gamma_A^{\prec}(g)$

Proposition (🌋 & V. Ripoll, 2020)

The order \rightarrow *is total (and therefore equal to* \prec *) if and only if* $\Gamma_A^{\prec}(g)$ *is connected (as a directed graph).*

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

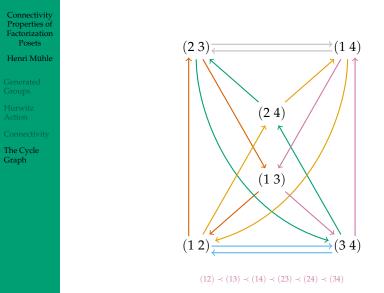
Connectivity

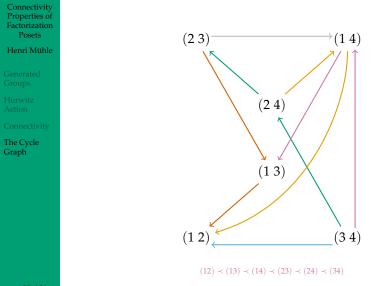
The Cycle Graph

- fix a *g*-compatible order \prec of A_g
- reduced cycle graph: for every $h \in B_g$ remove the unique \prec -rising factorization of $h \qquad \rightsquigarrow \Gamma_A^{\prec}(g)$
- let \rightarrow denote the dual of the order induced by $\Gamma_A^{\prec}(g)$

Proposition (🌋 & V. Ripoll, 2020)

 $\mathbf{P}_A(g)$ is well covered with respect to \prec if and only if $\Gamma_A^{\prec}(g)$ has a unique sink. In particular, if \rightarrow is total, then $\mathbf{P}_A(g)$ is well covered.





A Partial Result

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Theorem (***** & V. Ripoll, 2020)

Let $\ell_A(g) \ge 3$ such that $\operatorname{Red}_A(g)$ is finite, and let $\mathbf{P}_A(g)$ be a factorization poset in which every interval is chain-connected. Suppose that there is some $a \in A_g$ that lies in a unique monochromatic cycle of $\Gamma_A(g)$ which is not a loop. If there exists a *g*-compatible order \prec of A_g , then $\mathbf{P}_A(g)$ is totally well covered with respect to \prec .

A Partial Result

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Theorem (**&** & V. Ripoll, 2020)

Let $\ell_A(g) \ge 3$ such that $\operatorname{Red}_A(g)$ is finite, and let $\mathbf{P}_A(g)$ be a factorization poset in which every interval is chain-connected. Suppose that there is some $a \in A_g$ that lies in a unique monochromatic cycle of $\Gamma_A(g)$ which is not a loop. If there exists a *g*-compatible order \prec of A_g , then $\mathbf{P}_A(g)$ is totally well covered with respect to \prec .

• idea: characterize the cycle graphs that admit a compatible order

A Partial Result

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Theorem (🏅 & V. Ripoll, 2020)

Let $\ell_A(g) \geq 3$ such that $\operatorname{Red}_A(g)$ is finite, and let $\mathbf{P}_A(g)$ be a factorization poset in which every interval is chain-connected. Suppose that there is some $a \in A_g$ that lies in a unique monochromatic cycle of $\Gamma_A(g)$ which is not a loop. If there exists a *g*-compatible order \prec of A_g , then $\mathbf{P}_A(g)$ is totally well covered with respect to \prec .

- idea: characterize the cycle graphs that admit a compatible order
- there are two non-trivial options

Open Problems

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph • are factorization posets of quasi-Coxeter elements in (well-generated) reflection groups shellable?

are factorization posets of cycles (1 2 ... *kn*+1) in the subgroup of 𝔅_{*kn*+1} generated by all (*k* + 1)-cycles shellable?

Open Problems

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

- are factorization posets of quasi-Coxeter elements in (well-generated) reflection groups shellable?
- are factorization posets of cycles (1 2 ... *kn*+1) in the subgroup of 𝔅_{*kn*+1} generated by all (*k*+1)-cycles shellable?
- study Hurwitz graphs from a graph-theoretic perspective

Connectivity Properties of Factorization Posets

Henri Mühle

Generated Groups

Hurwitz Action

Connectivity

The Cycle Graph

Thank You.

Connectivity Properties of Factorization Posets

Henri Mühle

• *G* .. group; $A \subseteq G$.. generating set; ℓ_A .. word length

$$G = \left\langle r, s, t \mid r^2 = s^3 = t^3 = 1, t = rs \right\rangle_{\rm grp}$$

Connectivity Properties of Factorization Posets

Henri Mühle

• *G* .. group; $A \subseteq G$.. generating set; ℓ_A .. word length

$$G = \left\langle r, s, t \mid r^2 = s^3 = t^3 = \mathbb{1}, t = rs \right\rangle_{\text{grp}}$$

$$s = (1 2 3)$$

 $t = (2 4 3)$

Connectivity Properties of Factorization Posets

Henri Mühle

• *G* .. group; $A \subseteq G$.. generating set; ℓ_A .. word length

$$G = \left\langle r, s, t \mid r^2 = s^3 = t^3 = \mathbb{1}, t = rs \right\rangle_{\text{grp}}$$

Connectivity Properties of Factorization Posets

Henri Mühle

• *G* .. group; $A \subseteq G$.. generating set; ℓ_A .. word length

Return

$$\mathfrak{A}_{4} = \left\langle r, s, t \mid r^{2} = s^{3} = t^{3} = \mathbb{1}, t = rs \right\rangle_{\mathrm{grp}}$$