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A = GAG−1; g ∈ G
factorization poset: interval [1, g] in (G,≤pre)  PA(g)
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maximal chains in PA(g) are in bijection with
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A = GAG−1; g ∈ G
factorization poset: interval [1, g] in (G,≤pre)  PA(g)

Lemma (A. Björner, 1984)

For u ≤pre v ≤pre g, the interval [u, v] in PA(g) is isomorphic to
PA(u−1v).
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A ⊆ G; A(k) .. words of length k over A
Hurwitz action: σi acts on A(k) by

σi · (a1, a2, . . . , ai−1, ai, ai+1, ai+2, . . . , ak)
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A ⊆ G; A(k) .. words of length k over A
Hurwitz action: σi acts on A(k)

Observation (Folklore)
If A is closed under G-conjugation, then the Hurwitz action
extends to a group action of Bk on A(k).
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If A is closed under G-conjugation, then the Hurwitz action
preserves RedA(g) for any g ∈ G.
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A ⊆ G .. generating set; g ∈ G
Hurwitz action: σi acts on RedA(g)
Hurwitz-transitive: Hurwitz action has a single orbit

Observation ( & V. Ripoll, 2020)

The number of orbits of the Hurwitz action on RedA(g) can be
seen as a “connectivity coefficient” of PA(g).
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Hurwitz action: σi acts on RedA(g)
Hurwitz-connected: Hurwitz action has a single orbit

Observation ( & V. Ripoll, 2020)

The number of orbits of the Hurwitz action on RedA(g) can be
seen as a “connectivity coefficient” of PA(g).
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W .. well-generated complex reflection group
T .. set of all reflections of W
c .. Coxeter element of W

Theorem (P. Deligne, 1974; D. Bessis & R. Corran, 2006;
D. Bessis, 2006 (2015))
For any well-generated complex reflection group W and any
Coxeter element c ∈ W, the braid group B`T(c) acts transitively
on RedT(c).
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T .. set of all reflections of W
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 c-noncrossing W-partitions: elements of PT(c)
 Nonc(W, c)

Theorem (P. Deligne, 1974; D. Bessis & R. Corran, 2006;
D. Bessis, 2006 (2015))
For any well-generated complex reflection group W and any
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on RedT(c).
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quasi-Coxeter element: exists (a1, a2, . . . , an) ∈ RedT(g)
such that W = 〈a1, a2, . . . , an〉

Theorem (B. Baumeister, T. Gobet, K. Roberts &
P. Wegener, 2017)
Let W be a finite real reflection group. Then B`T(g) acts
transitively on RedT(g) if and only if there exists a parabolic
subgroup W′ of W for which g is a quasi-Coxeter element.
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such that W = 〈a1, a2, . . . , an〉

Theorem (B. Baumeister, T. Gobet, K. Roberts &
P. Wegener, 2017)
Let W be a finite real reflection group. Then B`T(g) acts
transitively on RedT(g) if and only if there exists a parabolic
subgroup W′ of W for which g is a quasi-Coxeter element.

 extension to complex reflection groups by J. Lewis and
J. Wang (2021)
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conditions for Hurwitz-equivalence
T. Ben-Itzhak & M. Teicher (2003); X. Hou (2008); C. Sia (2009); E. Berger

(2011); J. Lewis (2020)

computation of braid monodromy
E. Brieskorn (1988); A. Libgober (1999); V. Kulikov & M. Teicher (2000)

Hurwitz action in finitely-generated real reflection
groups
B. Baumeister, M. Dyer, C. Stump & P. Wegener (2014); P. Wegener (2020)

subgroups of the symmetric group generated by
k-cycles

& P. Nadeau (2019); , P. Nadeau & N. Williams (2020)
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)
, where

HE (g) def
=

{
(g, g′) | g′ = σ±1

i · g for some i ∈ [`A(g)− 1]
}

Hurwitz-connected: H (g) is connected

G = S4
g = (1 2 3 4)
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RedA(g) is in bijection with the maximal chains of PA(g)
(g, g′) ∈HE (g) implies that the corresponding chains
differ in one element

g = a1 · · · ai−1aiai+1ai+2 · · · ak

1

a1

a1a2

a1 · · · ai−1

a1 · · · ai−1ai

a1 · · · ai−1aiai+1

g
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RedA(g) is in bijection with the maximal chains of PA(g)
(g, g′) ∈HE (g) implies that the corresponding chains
differ in one element

g = a1 · · · ai−1ai+1(a−1
i+1aiai+1)ai+2 · · · ak

1

a1

a1a2

a1 · · · ai−1
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g
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂
and rank k
maximal chain: maximal subset of pairwise
comparable elements  M (P)

chain graph: C (P) def
=

(
M (P), CE (P)

)
, where

CE (P) def
=

{
(C, C′) | |C∩ C′| = k

}
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂
and rank k
maximal chain: maximal subset of pairwise
comparable elements  M (P)

chain graph: C (P) def
=

(
M (P), CE (P)

)
, where

CE (P) def
=

{
(C, C′) | |C∩ C′| = k

}
P C (P)

1 2

2 1 2̄ 1̄ 1̄ 2 1 2̄

1̄ 2̄

t1 t4 t2 t3

t4 t1 t3 t2

t1|t4

t4|t1

t2|t3

t3|t2
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂
and rank k
maximal chain: maximal subset of pairwise
comparable elements  M (P)

chain graph: C (P) def
=

(
M (P), CE (P)

)
, where

CE (P) def
=

{
(C, C′) | |C∩ C′| = k

}
P(1̄ 2̄) H (1̄ 2̄)

1 2

2 1 2̄ 1̄ 1̄ 2 1 2̄

1̄ 2̄

t1 t4 t2 t3

t4 t1 t3 t2

t1|t4

t4|t1

t2|t3

t3|t2
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Chain Graph

P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂
and rank k
chain connected: C (P) is connected

Proposition ( & V. Ripoll, 2020)

If PA(g) is Hurwitz-connected, then it is chain connected.
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂

shelling: total order ≺ on M (P) such that whenever
M ≺ M′, then there is N ≺ M′ and x ∈ M′ such that
M∩M′ ⊆ N ∩M′ = M′ \ {x}
shellable: admits shelling of M (P)

0̂

a b

c d

1̂

C1 = {0̂, a, c, 1̂}
C2 = {0̂, b, d, 1̂}

 C1 ∩ C2 = C2 \ {b, d}
no
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂

shelling: total order ≺ on M (P) such that whenever
M ≺ M′, then there is N ≺ M′ and x ∈ M′ such that
M∩M′ ⊆ N ∩M′ = M′ \ {x}
shellable: admits shelling of M (P)

0̂

a b

c d

1̂

C1 = {0̂, a, c, 1̂}
C2 = {0̂, a, d, 1̂}
C3 = {0̂, b, d, 1̂}

 C1 ∩ C2 = C2 \ {d}
C2 ∩ C3 = C3 \ {b}
C1 ∩ C3 ⊆ C2 ∩ C3

yes
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂

shelling: total order ≺ on M (P) such that whenever
M ≺ M′, then there is N ≺ M′ and x ∈ M′ such that
M∩M′ ⊆ N ∩M′ = M′ \ {x}
shellable: admits shelling of M (P)

Proposition ( & V. Ripoll, 2020)
Every shellable poset is chain connected.
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EL-labeling: edge-labeling such that for each interval
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EL-shellable: poset that admits an EL-labeling
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂

EL-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising
EL-shellable: poset that admits an EL-labeling
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂

EL-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising
EL-shellable: poset that admits an EL-labeling
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂

EL-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising
EL-shellable: poset that admits an EL-labeling

Proposition (A. Björner, 1980)
Every EL-shellable poset is shellable.
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P = (P,≤) .. (finite) graded poset with bounds 0̂ and 1̂

EL-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising
EL-shellable: poset that admits an EL-labeling

Observation ( )
Any factorization poset PA(g) admits a canonical edge labeling
given by λg(u, v) def

= u−1v ∈ A.
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(1)

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(13) (24) (12) (23) (34) (14)

(12)

(34) (23) (14)(23)
(24)

(34)

(13)

(34)
(14)

(24)

(14)

(12)(13) (12)

(23)

(34) (14) (12) (23) (24) (13)
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Proposition (A. Björner & P. Edelman, 1980)
For n > 0, the lexicographic order on transpositions makes λc an
EL-labeling of Nonc(Sn, c), where c = (1 2 . . . n).

(1)

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(13) (24) (12) (23) (34) (14)

(12)

(34) (23) (14)(23)
(24)

(34)

(13)

(34)
(14)

(24)

(14)

(12)(13) (12)

(23)

(34) (14) (12) (23) (24) (13)

(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
17 / 31
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Ag
def
=

{
a ∈ A | a ≤pre g}  RedA(g) = RedAg(g)

fix a total order ≺ of Ag
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Ag
def
=

{
a ∈ A | a ≤pre g}  RedA(g) = RedAg(g)

fix a total order ≺ of Ag

≺-rising factorization: (a1, a2, . . . , an) ∈ RedA(g) with
a1 � a2 � · · · � an
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def
=

{
a ∈ A | a ≤pre g}  RedA(g) = RedAg(g)

fix a total order ≺ of Ag

≺-rising factorization: (a1, a2, . . . , an) ∈ RedA(g) with
a1 � a2 � · · · � an

Definition ( & V. Ripoll, 2020)
A total order of Ag is g-compatible if every h ≤pre g with
`A(h) = 2 has a unique ≺-rising factorization.
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Ag
def
=

{
a ∈ A | a ≤pre g}  RedA(g) = RedAg(g)

fix a total order ≺ of Ag

≺-rising factorization: (a1, a2, . . . , an) ∈ RedA(g) with
a1 � a2 � · · · � an

Definition ( & V. Ripoll, 2020)
A total order of Ag is g-compatible if every h ≤pre g with
`A(h) = 2 has a unique ≺-rising factorization.

 compatibility is a “local” version of EL-shellability
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Proposition (A. Björner & P. Edelman, 1980)
For n > 0, the lexicographic order on transpositions makes λc an
EL-labeling of Nonc(Sn, c), where c = (1 2 . . . n).

(1)

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(13) (24) (12) (23) (34) (14)

(12)

(34) (23) (14)(23)
(24)

(34)

(13)

(34)
(14)

(24)

(14)

(12)(13) (12)

(23)

(34) (14) (12) (23) (24) (13)

(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
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Corollary (A. Björner & P. Edelman, 1980)
For n > 0, the lexicographic order on transpositions of Sn is
c-compatible, where c = (1 2 . . . n).

(1)

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)
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(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
19 / 31



Connectivity
Properties of
Factorization

Posets

Henri Mühle

Generated
Groups

Hurwitz
Action

Connectivity

The Cycle
Graph

Compatible Generator Orders

Corollary (A. Björner & P. Edelman, 1980)
For n > 0, the lexicographic order on transpositions of Sn is
c-compatible, where c = (1 2 . . . n).

(1)

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(24) (23) (34)

(23)

(34)
(24)

(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
19 / 31



Connectivity
Properties of
Factorization

Posets

Henri Mühle

Generated
Groups

Hurwitz
Action

Connectivity

The Cycle
Graph

Compatible Generator Orders

Corollary (A. Björner & P. Edelman, 1980)
For n > 0, the lexicographic order on transpositions of Sn is
c-compatible, where c = (1 2 . . . n).

(1)

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(13) (34) (14)

(34)
(14)

(13)

(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
19 / 31



Connectivity
Properties of
Factorization

Posets

Henri Mühle

Generated
Groups

Hurwitz
Action

Connectivity

The Cycle
Graph

Compatible Generator Orders

Corollary (A. Björner & P. Edelman, 1980)
For n > 0, the lexicographic order on transpositions of Sn is
c-compatible, where c = (1 2 . . . n).

(1)

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(24) (12) (14)

(14)
(24)

(12)

(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
19 / 31



Connectivity
Properties of
Factorization

Posets

Henri Mühle

Generated
Groups

Hurwitz
Action

Connectivity

The Cycle
Graph

Compatible Generator Orders

Corollary (A. Björner & P. Edelman, 1980)
For n > 0, the lexicographic order on transpositions of Sn is
c-compatible, where c = (1 2 . . . n).

(1)

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(12) (34)

(34) (12)

(12) ≺ (13) ≺ (14) ≺ (23) ≺ (24) ≺ (34)
19 / 31



Connectivity
Properties of
Factorization

Posets

Henri Mühle

Generated
Groups

Hurwitz
Action

Connectivity

The Cycle
Graph

Compatible Generator Orders

Corollary (A. Björner & P. Edelman, 1980)
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(1)

(1 3) (2 4) (1 2) (2 3) (3 4) (1 4)

(1 2 3) (2 3 4) (1 3 4) (1 2 4) (1 2)(3 4) (1 4)(2 3)

(1 2 3 4)

(13) (12) (23)

(12)
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Theorem (C. Athanasiadis, T. Brady & C. Watt, 2007; ,
2015)
For every well-generated complex reflection group W and every
Coxeter element c ∈ W, the set of all reflections admits a
c-compatible order.
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Theorem (C. Athanasiadis, T. Brady & C. Watt, 2007; ,
2015)
For every well-generated complex reflection group W and every
Coxeter element c ∈ W, the set of all reflections admits a
c-compatible order.

 crucial component in the proof of the EL-shellability
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Conjecture ( & V. Ripoll, 2020)

If RedA(g) is finite, every interval of PA(g) is chain connected
and Ag admits a g-compatible generator order, then λg is an
EL-labeling.
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Lemma ( & V. Ripoll, 2020)

Suppose that `A(g) = 2. There exists a g-compatible order of Ag
if and only if PA(g) is Hurwitz-connected.
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Lemma ( & V. Ripoll, 2020)

Suppose that `A(g) = 2. There exists a g-compatible order of Ag
if and only if PA(g) is Hurwitz-connected.

 does not extend to `A(g) > 2
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Theorem ( & V. Ripoll, 2020)

If RedA(g) is finite, PA(g) is chain connected and Ag admits a
g-compatible generator order, then PA(g) is Hurwitz-connected.

Corollary ( & V. Ripoll, 2020)

If RedA(g) is finite and λg is an EL-labeling, then PA(g) is
Hurwitz-connected.
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Hurwitz-transitivity does not necessarily imply rank-2
Hurwitz-transitivity

G =
〈
r, s, t, u | r2 = s2, t2 = u2, rs = sr, tu = ut,

rt = ts = su = ur, st = tr = ru = us
〉

grp

P(rrt)

1

r t u s

rt rr rs ru

rrt
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G =
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Hurwitz-transitivity does not necessarily imply
shellability

G =
〈
r, s, t, u, v | r3 = s3, t2 = u2 = v2, rs = sr, tu = uv = vt,

ut = tv = vu, rt = ts = sv = vr, rv = vs = su = ur,
ru = us = st = tr

〉
grp

P(rrrt)
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r v t u s
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rrt rrs rrr rss rrv

rrrt
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〈
r, s, t, u, v | r3 = s3, t2 = u2 = v2, rs = sr, tu = uv = vt,

ut = tv = vu, rt = ts = sv = vr, rv = vs = su = ur,
ru = us = st = tr

〉
grp

H (rrrt)

rrts rtss
rrrt tsss

rvrs rsvs
rrsv vrss

rrvr svss
rsrv vsrs

rvsr srvs
vssr

srrv rssu

urrs

ursr srsu
rsur surs

rurr ssus
usrr ssru

srur susr
trrr ssst

strr sstr
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Limitations

existence of a compatible order does not necessarily
imply shellability

G =
〈
r, s, t, u, v, w | commutations, rst = uvw

〉
grp

P(rst)

1

r s t u v w

rs rt st uv uw vw

rst
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fix a total order ≺ of Ag

well covered: if b ∈ Ag is not ≺-minimal, there exists
some a ≺ b such that a and b have a common upper
cover in PA(g)
totally well covered: every interval is well covered

Theorem ( & V. Ripoll, 2020)

Let ≺ be a total order of Ag. Then, λg is an EL-labeling of PA(g)
with respect to ≺ if and only if ≺ is g-compatible and PA(g) is
totally well covered with respect to ≺.
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well covered: if b ∈ Ag is not ≺-minimal, there exists
some a ≺ b such that a and b have a common upper
cover in PA(g)
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Theorem ( & V. Ripoll, 2020)

Let ≺ be a total order of Ag. Then, λg is an EL-labeling of PA(g)
with respect to ≺ if and only if ≺ is g-compatible and PA(g) is
totally well covered with respect to ≺.

 modeled after recursive atom orders of A. Björner and
M. Wachs (1983)
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Well-Covered Factorization Posets

fix a total order ≺ of Ag

well covered: if b ∈ Ag is not ≺-minimal, there exists
some a ≺ b such that a and b have a common upper
cover in PA(g)
totally well covered: every interval is well covered

Theorem ( & V. Ripoll, 2020)

If RedA(g) is finite and PA(g) admits a g-compatible order ≺ of
Ag and PA(g) is totally well covered with respect to ≺, then
PA(g) is chain connected, Hurwitz-connected and shellable.
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Well-Covered Factorization Posets

fix a total order ≺ of Ag

well covered: if b ∈ Ag is not ≺-minimal, there exists
some a ≺ b such that a and b have a common upper
cover in PA(g)
totally well covered: every interval is well covered

Conjecture ( & V. Ripoll, 2020)

If every interval of PA(g) is chain connected and there exists a
g-compatible order ≺ of Ag, then PA(g) is totally well covered
with respect to ≺.
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The Cycle Graph of PA(g)

cycle graph: labeled directed graph

ΓA(g)
def
= (Vg,~Eg, σg), where:

Vg
def
= Ag

~Eg
def
=

{
(a, b) | ab ≤pre g

}
σg
(
(a, b)

) def
= ab
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cycle graph: labeled directed graph

ΓA(g)
def
= (Vg,~Eg, σg), where:

Vg
def
= Ag

~Eg
def
=

{
(a, b) | ab ∈ Bg

}
σg
(
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) def
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The Cycle Graph of PA(g)

cycle graph: labeled directed graph

ΓA(g)
def
= (Vg,~Eg, σg), where:

Vg
def
= Ag

~Eg
def
=

{
(a, b) | ab ∈ Bg

}
σg
(
(a, b)

) def
= ab

Bg
def
=

{
h ∈ G | `A(h) = 2 and h ≤pre g

}
Lemma ( & V. Ripoll, 2020)

For any h ∈ Bg, the set of edges labeled by h in ΓA(g) is a disjoint
union of directed cycles. Each such cycle corresponds to a
connected component of H (h).
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The Cycle Graph of PA(g)

Bg
def
=

{
h ∈ G | `A(h) = 2 and h ≤pre g

}
defect: minimal number of edges to be removed so that
the remaining graph is acyclic  df(g)
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The Cycle Graph of PA(g)

Bg
def
=

{
h ∈ G | `A(h) = 2 and h ≤pre g

}
defect: minimal number of edges to be removed so that
the remaining graph is acyclic  df(g)

Proposition ( V. Ripoll, 2020)

For any g ∈ G, df(g) ≥ |Bg|. Moreover, df(g) = |Bg| if and only
if PA(g) admits a g-compatible order of Ag.
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fix a g-compatible order ≺ of Ag

reduced cycle graph: for every h ∈ Bg remove the
unique ≺-rising factorization of h  Γ≺A (g)
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The Reduced Cycle Graph of PA(g)

fix a g-compatible order ≺ of Ag

reduced cycle graph: for every h ∈ Bg remove the
unique ≺-rising factorization of h  Γ≺A (g)
let→ denote the dual of the order induced by Γ≺A (g)

Proposition ( & V. Ripoll, 2020)
The order→ is total (and therefore equal to ≺) if and only if
Γ≺A (g) is connected (as a directed graph).
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The Reduced Cycle Graph of PA(g)

fix a g-compatible order ≺ of Ag

reduced cycle graph: for every h ∈ Bg remove the
unique ≺-rising factorization of h  Γ≺A (g)
let→ denote the dual of the order induced by Γ≺A (g)

Proposition ( & V. Ripoll, 2020)

PA(g) is well covered with respect to ≺ if and only if Γ≺A (g) has a
unique sink. In particular, if→ is total, then PA(g) is well
covered.
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A Partial Result

Theorem ( & V. Ripoll, 2020)

Let `A(g) ≥ 3 such that RedA(g) is finite, and let PA(g) be a
factorization poset in which every interval is chain-connected.
Suppose that there is some a ∈ Ag that lies in a unique
monochromatic cycle of ΓA(g) which is not a loop. If there exists a
g-compatible order ≺ of Ag, then PA(g) is totally well covered
with respect to ≺.
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Suppose that there is some a ∈ Ag that lies in a unique
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idea: characterize the cycle graphs that admit a
compatible order
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A Partial Result

Theorem ( & V. Ripoll, 2020)

Let `A(g) ≥ 3 such that RedA(g) is finite, and let PA(g) be a
factorization poset in which every interval is chain-connected.
Suppose that there is some a ∈ Ag that lies in a unique
monochromatic cycle of ΓA(g) which is not a loop. If there exists a
g-compatible order ≺ of Ag, then PA(g) is totally well covered
with respect to ≺.

idea: characterize the cycle graphs that admit a
compatible order
there are two non-trivial options
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Open Problems

are factorization posets of quasi-Coxeter elements in
(well-generated) reflection groups shellable?
are factorization posets of cycles (1 2 . . . kn+1) in the
subgroup of Skn+1 generated by all (k + 1)-cycles
shellable?
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Open Problems

are factorization posets of quasi-Coxeter elements in
(well-generated) reflection groups shellable?
are factorization posets of cycles (1 2 . . . kn+1) in the
subgroup of Skn+1 generated by all (k + 1)-cycles
shellable?
study Hurwitz graphs from a graph-theoretic
perspective
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G =
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G =
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