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€ Connectivity
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@ GCenerated Groups



@ G .. group; A C G .. generating set; /4 .. word length

G={(rst|rr==8=1t=rs)
grp



.. group; A C G .. generating set; /4 .. word length

G={(rst|rr==8=1t=rs)
grp

st tr ts tt sts sst



@ G .. group; A C G .. generating set; /4 .. word length

o A suffix-order: u <q v if and only if
Ca(ou™1) + La(u) = Ly (0)

G={(nst|rr==8=1t=rs)
grp
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@ G .. group; A C G .. generating set; /4 .. word length

o A prefix-order: u <p. v if and only if
Ca(u) +La(u=10) = Ly(v)

G={(nst|rr==8=1t=rs)
grp

G, <
( _pre> sts sst



@ G .. group; A C G .. generating set; /4 .. word length
e A=A""L (Gr Ssuf) = (Gr Spre)

G={(51|s?=1>=1,sts = tst)
&rp

(G/ Ssuf) sts
7\
ts st
| |
S \ / t
1



@ G .. group; A C G .. generating set; /4 .. word length
e A=A""L (Gr Ssuf) = (Gr Spre)

G={(51|s?=1>=1,sts = tst)
&rp

(G' Spre) sts
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st ts
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@ G .. group; A C G .. generating set; /4 .. word length
A= GAGilz (G/ Ssuf) = (G/ Spre)

G={(nst|rr=2=2=1Lrs=st=tr)
grp

(G, Ssuf)



@ G .. group; A C G .. generating set; /4 .. word length
A= GAGilz (G/ Ssuf) = (G/ Spre)

G={(nst|rr=2=2=1Lrs=st=tr)
grp

(G/ S pre)



@ G .. group; A C G .. generating set; /4 .. word length
@ A=GAG™: (G, <) = (G, <pre)  ~ absolute order



e A=GAG ;¢€G
@ factorization poset: interval [1,g] in (G, <pre) ~> Pa(g)



e A=GAG ;¢€G
@ factorization poset: interval [1,g] in (G, <pre) ~> Pa(g)

G={(r5t|rr=s*=1=e¢rs=st=tr)
grp
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e A=GAG ;¢€G
@ factorization poset: interval [1,g] in (G, <pre) ~> Pa(g)

G={(r5t|rr=s*=1=e¢rs=st=tr)
grp

Py(rs)
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e A=GAG ;¢€G
@ factorization poset: interval [1,g] in (G, <pre) ~> Pa(g)

@ maximal chains in P,4(g) are in bijection with
A-reduced words for g ~> Redx ()

G={(r5t|rr=s*=1=e¢rs=st=tr)
grp

Py(rs)

//\
\l/

Red(rs)

{



e A=GAG ;¢€G
@ factorization poset: interval [1,g] in (G, <pre) ~> Pa(g)

@ maximal chains in P,4(g) are in bijection with
A-reduced words for g ~> Redx ()

G={(r5t|rr=s*=1=e¢rs=st=tr)
grp

Py(rs)

//\
\l/

Reda(rs) = {st



e A=GAG ;¢€G
@ factorization poset: interval [1,g] in (G, <pre) ~> Pa(g)

@ maximal chains in P,4(g) are in bijection with
A-reduced words for g ~> Redx ()

G={(r5t|rr=s*=1=e¢rs=st=tr)
grp

Py(rs)

//\
\l/

Reda(rs) = {st,7s



e A=GAG ;¢€G
@ factorization poset: interval [1,g] in (G, <pre) ~> Pa(g)

@ maximal chains in P,4(g) are in bijection with
A-reduced words for g ~> Redx ()

G={(r5t|rr=s*=1=e¢rs=st=tr)
grp

Py(rs)

//\
\l/

Reda(rs) = {st,rs,1r}



e A=GAG ;¢€G
@ factorization poset: interval [1,g] in (G, <pre) ~> Pa(g)

Lemma (A. Bjorner, 1984)

For u <pre v <pre g, the interval [u,v] in P4(g) is isomorphic to
Py(u=1v).




@ Hurwitz Action



o K] & {1,2,...,k} fork>0

@ braid group:
By = (01,...,0k_1 | 001410 = 01411030341 fori € [k —2],

o0y = ooy if i —j] > 1)



o K] & {1,2,...,k} fork>0

@ braid group:
By = (01,...,0k_1 | 001410 = 01411030341 fori € [k —2],

o0y = ooy if i —j] > 1)

i



o K] & {1,2,...,k} fork>0

@ braid group:
By = (01,...,0k_1 | 001410 = 01411030341 fori € [k —2],

o0y = ooy if i —j] > 1)



o K] & {1,2,...,k} fork>0

@ braid group:
By = (01,...,0k_1 | 001410 = 01411030341 fori € [k —2],

o0y = ooy if i —j] > 1)

010201 = — s
=



o K] & {1,2,...,k} fork>0

@ braid group:
By = (01,...,0k_1 | 001410 = 01411030341 fori € [k —2],

o0y = ooy if i —j] > 1)

010000 = — P
=



o K] & {1,2,...,k} fork>0

@ braid group:
By = (01,...,0k_1 | 001410 = 01411030341 fori € [k —2],

o0y = ooy if i —j] > 1)



@ ACG;A® . words of length k over A

@ Hurwitz action: 0; acts on A%) by

(m,a,...,8i-1, aj, Ajs1, Aiy2, ..., 0)



@ ACG;A® . words of length k over A

@ Hurwitz action: 0; acts on A%) by

(I (ﬂl,ﬂz,---,ﬂiflf i, Ait1, ﬂi+2,~-,ak)



@ ACG;A® . words of length k over A

@ Hurwitz action: 0; acts on A%) by

-1
= (611,!12,---,¢1i—1, Aiv1, 4;14idi1, tli+2,---,ﬂk)



@ ACG;A® . words of length k over A

@ Hurwitz action: o; acts on A%

Observation (Folklore)

If A is closed under G-conjugation, then the Hurwitz action
extends to a group action of By on AX).




@ A C G .. generating set; g € G
@ Hurwitz action: ¢; acts on Red, (g)

Observation (Folklore)

If A is closed under G-conjugation, then the Hurwitz action
preserves Reda(g) for any g € G.




@ A C G .. generating set; g € G
@ Hurwitz action: ¢; acts on Red, (g)

@ Hurwitz-transitive: Hurwitz action has a single orbit

Observation (Folklore)

If A is closed under G-conjugation, then the Hurwitz action
preserves Reda(g) for any g € G.




@ A C G .. generating set; g € G
@ Hurwitz action: ¢; acts on Red, (g)

@ Hurwitz-transitive: Hurwitz action has a single orbit

g =4ay---a;_10i;4140i42 - - - Ak
&g

ap - ai-18i841



@ A C G .. generating set; g € G
@ Hurwitz action: ¢; acts on Red, (g)
@ Hurwitz-transitive: Hurwitz action has a single orbit

-1
g=a1-- 'aiflui+1(ﬂi+1aiai+1)ui+2 B L
8

ap - ai-18i8i41

ap ---a;_qa; ay - 0i-184



@ A C G .. generating set; g € G
@ Hurwitz action: ¢; acts on Red, (g)

@ Hurwitz-transitive: Hurwitz action has a single orbit

Observation (# & V. Ripoll, 2020)

The number of orbits of the Hurwitz action on Red(g) can be
seen as a “connectivity coefficient” of P4 (g).




@ A C G .. generating set; g € G
@ Hurwitz action: ¢; acts on Red, (g)

@ Hurwitz-connected: Hurwitz action has a single orbit

Observation (# & V. Ripoll, 2020)

The number of orbits of the Hurwitz action on Red(g) can be
seen as a “connectivity coefficient” of P4 (g).




@ origin: Hurwitz’ enumeration of branched coverings of
a Riemann surface (1891)

- G=6, A={(ij)|1<i<j<n},g=(12...n)



@ origin: Hurwitz’ enumeration of branched coverings of
a Riemann surface (1891)

- G=6, A={(ij)|1<i<j<n},g=(12...n)

(1234)
(123) //;;;;//:;4 (124) (12)(34) (14)(23)
(13) (2 4) (12) (23) (34) (14)



@ origin: Hurwitz’ enumeration of branched coverings of
a Riemann surface (1891)

- G=6, A={(ij)|1<i<j<n},g=(12...n)

NN
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o W .. well-generated complex reflection group

@ T .. set of all reflections of W
@ c .. Coxeter element of W

Theorem (P. Deligne, 1974; D. Bessis & R. Corran, 2006;

D. Bessis, 2006 (2015))

For any well-generated complex reflection group W and any
Coxeter element ¢ € W, the braid group B, acts transitively
on Redr(c).




o W .. well-generated complex reflection group

@ T .. set of all reflections of W
@ c .. Coxeter element of W

~ c-noncrossing W-partitions: elements of Py (c)
~> Nonc(W,¢)

Theorem (P. Deligne, 1974; D. Bessis & R. Corran, 2006;

D. Bessis, 2006 (2015))

For any well-generated complex reflection group W and any
Coxeter element ¢ € W, the braid group B, acts transitively
on Redr(c).




® B (o) does not act transitively onany g € W



® B (o) does not act transitively onany g € W

@eg:W=Byg¢=12



® B (o) does not act transitively onany g € W

@eg:W=Byg¢=12



® B (o) does not act transitively onany g € W
eeg:W=Sym([]),g=

AN
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® B (o) does not act transitively onany g € W
eeg:W=Sym([]),g=

AN
/N

N/
l\4\ // 3
[]

K| = tity = tyhy = btz = t3hy



® B (o) does not act transitively onany g € W
eeg:W=Sym([]),g=




@ quasi-Coxeter element: exists (a1,ay,...,4,) € Redr(g)
such that W = (ay,4ay, ... ,a,)

Theorem (B. Baumeister, T. Gobet, K. Roberts &

P. Wegener, 2017)

Let W be a finite real reflection group. Then B, o) acts
transitively on Redr(g) if and only if there exists a parabolic
subgroup W' of W for which g is a quasi-Coxeter element.




@ quasi-Coxeter element: exists (a1,ay,...,4,) € Redr(g)
such that W = (ay,4ay, ... ,a,)

Theorem (B. Baumeister, T. Gobet, K. Roberts &

P. Wegener, 2017)

Let W be a finite real reflection group. Then B, o) acts
transitively on Redr(g) if and only if there exists a parabolic
subgroup W' of W for which g is a quasi-Coxeter element.

~ extension to complex reflection groups by J. Lewis and
J. Wang (2021)



@ conditions for Hurwitz-equivalence
T. Ben-Itzhak & M. Teicher (2003); X. Hou (2008); C. Sia (2009); E. Berger
(2011); J. Lewis (2020)

@ computation of braid monodromy
E. Brieskorn (1988); A. Libgober (1999); V. Kulikov & M. Teicher (2000)

@ Hurwitz action in finitely-generated real reflection
groups
B. Baumeister, M. Dyer, C. Stump & P. Wegener (2014); P. Wegener (2020)

@ subgroups of the symmetric group generated by
k-cycles
& & P. Nadeau (2019); €, P. Nadeau & N. Williams (2020)



€ Connectivity



e Hurwitz graph: #(g) & (Reda(g), #&(g)), where
def .
HE(Q) = {(8) |8 =0 -gforsomeic [(a(g) —1]}



e Hurwitz graph: #(g) & (Reda(g), #&(g)), where
H8(3) = {(88) | g =" - gforsomei € [(a(g) — 1]}

G=6, 12|24)23 —— 12|23|34
g=1(1234) / \ / \
12(34/24
14]12(23 —— 24/14[23 13|12|34 —— 23[13[34
14]23[13 23|14[13
14|13|12 —— 13[34/12 24]23|14 —— 23(34(14

34[12|24

ANVANVZ

34[14[12 —— 34|24[14




e Hurwitz graph: #(g) & (Reda(g), #&(g)), where

#6(3) < {(gg) | g =0 g forsomei€ [La(g) — 1]}
@ Hurwitz-connected: J#(g) is connected

G=6, 12|24)23 —— 12|23|34
g=1(1234) / \ / \
12(34/24
14]12(23 —— 24/14[23 13|12|34 —— 23[13[34
14]23[13 23|14[13
14|13|12 —— 13[34/12 24]23|14 —— 23(34(14
34/12|24

ANVANVZ

34[14[12 —— 34|24[14




@ Red,(g) is in bijection with the maximal chains of P4(g)



@ Red,(g) is in bijection with the maximal chains of P4(g)

o (g g') € & (g) implies that the corresponding chains
differ in one element



@ Red,(g) is in bijection with the maximal chains of P4(g)

o (g g') € & (g) implies that the corresponding chains
differ in one element

g =ay- - a;—10;;414i42 * - - A
g

ay - ai-10i8i4
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@ Red,(g) is in bijection with the maximal chains of P4(g)

o (g g') € & (g) implies that the corresponding chains
differ in one element

-1
g=4a-- 'ai—lai+1(ai+1aiai+1)ai+2 cr g
g

ay - ai-10i8i4

aj---a;_14a; / ap - @iy

ay - aiq

-

ayaz
|
m

|
1



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1
and rank k



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1
and rank k

@ maximal chain: maximal subset of pairwise
comparable elements ~ M (P)

@ chain graph: ¢'(P) &ef (4 (P),¢&(P)), where
(€.l lenc| =k}

%6 (P) &



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1
and rank k
@ maximal chain: maximal subset of pairwise

comparable elements ~ M (P)
@ chain graph: ¢'(P) &ef (4 (P),¢&(P)), where
¢s(P) ¥ {(c,C') ||IcnC| =k}
P 12 ¢ (P)
AN
ty t ts t bty ——————— i3]h
SN N
21 21 12 12 ‘ ‘
\M \u fz/ fz/ bty ——————— blt3
/



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1
and rank k

@ maximal chain: maximal subset of pairwise

comparable elements ~ M (P)
@ chain graph: ¢'(P) &ef (4 (P),¢&(P)), where
¢s(P) ¥ {(c,C') ||IcnC| =k}
P(12) 12 H#(12)
AN
ty t ts t t4|f1 t3|t2
AN
21 21 12 12
2 by ty t3 t |f4 tr | t3
N\ /7



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1
and rank k

@ chain connected: ¢ (P) is connected

Proposition (# & V. Ripoll, 2020)

If P4 (g) is Hurwitz-connected, then it is chain connected.




@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ shelling: total order < on . (P) such that whenever
M < M/, then there is N < M’ and x € M’ such that
MNM CNAM =M\ {x}

@ shellable: admits shelling of .# (P)



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ shelling: total order < on . (P) such that whenever
M < M/, then there is N < M’ and x € M’ such that
MAM CNAM =M\ {x}

@ shellable: admits shelling of .# (P)

C,={0,a,c1}
i C, ={0,b,d,1}
N

| | ~ C1NCy =Gy \ {b,d}

“\6/"

no



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ shelling: total order < on . (P) such that whenever
M < M/, then there is N < M’ and x € M’ such that
MNM CNAM =M\ {x}

@ shellable: admits shelling of .# (P)

C = {G,a,c,i}
C2 = {(A),ﬂ,d,i}
Cy ={0,b,d,1}

1
/\d
| ~C1NC :C\{d}
i/b 1M1¢2 2

CoNCs =C3\ {b} ves

\ / C1NC3 CCNGCs



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ shelling: total order < on . (P) such that whenever
M < M/, then there is N < M’ and x € M’ such that
MNM CNAM =M\ {x}

@ shellable: admits shelling of .Z (P)

Proposition (# & V. Ripoll, 2020)

Every shellable poset is chain connected.




@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ El-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising

@ EL-shellable: poset that admits an EL-labeling



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ El-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising

@ EL-shellable: poset that admits an EL-labeling

[V —e— 0
S - R

no



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ El-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising

@ EL-shellable: poset that admits an EL-labeling

[V —e— 0
S = R

no



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ El-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising

@ EL-shellable: poset that admits an EL-labeling

yes



@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ El-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising

@ EL-shellable: poset that admits an EL-labeling

Proposition (A. Bjorner, 1980)

Every EL-shellable poset is shellable.




@ P = (P, <) .. (finite) graded poset with bounds 0 and 1

@ El-labeling: edge-labeling such that for each interval
the lexicographically smallest chain is uniquely rising

@ EL-shellable: poset that admits an EL-labeling

Observation ()

Any factorization poset P (g) admits a canonical edge labeling
given by A¢(u,v) L uloe A




(1234)
NN~
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(123) (234) (134) (124) (12)(34) (14)(23)

(13) (24) (12) (23) (34) (14)
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Proposition (A. Bjorner & P. Edelman, 1980)
For n > 0, the lexicographic order on transpositions makes A. an
EL-labeling of Nonc(S,,, ¢), wherec = (12 ... n).
(1234)
N~

SN N T
(123) (234) (134) (124) (12)(34) (14)(23)

(13) (24) (12) (23) (34) (14)

~._\ /

13
(12) < (13) < (14) < (23) < (24)



oAgdéf{aEAMSpreg}

@ fix a total order < of A,

~» Reda(g) = Reda (g)



0 A, ¥ {aeAla<peg} ~~ Reda(g) = Reda,(g)

@ fix a total order < of A,

@ —<-rising factorization: (aq,a,...,4,) € Redy(g) with
ap 2ay = 2 ay




oAgdéf{aEAMSpreg}

@ fix a total order < of A,

~» Reda(g) = Reda (g)

@ <-rising factorization: (ay,ay,...,a,) € Reds(g) with
ap Ay X - 2

Definition (¢ & V. Ripoll, 2020)

A total order of A is g-compatible if every h <, ¢ with
¢4 (h) = 2 has a unique <-rising factorization.




oAgdéf{aEAMSpreg}

@ fix a total order < of A,

~» Reda(g) = Reda (g)

@ <-rising factorization: (ay,ay,...,a,) € Reds(g) with
ap Ay X - 2

Definition (¢ & V. Ripoll, 2020)

A total order of A is g-compatible if every h <, ¢ with
¢4 (h) = 2 has a unique <-rising factorization.

~» compatibility is a “local” version of EL-shellability



Proposition (A. Bjorner & P. Edelman, 1980)
For n > 0, the lexicographic order on transpositions makes A. an
EL-labeling of Nonc(S,,, ¢), wherec = (12 ... n).
(1234)
N~

SN N T
(123) (234) (134) (124) (12)(34) (14)(23)

(13) (24) (12) (23) (34) (14)

~._\ /

13
(12) < (13) < (14) < (23) < (24)



Corollary (A. Bjorner & P. Edelman, 1980)

For n > 0, the lexicographic order on transpositions of &, is
c-compatible, wherec = (12 ... n).

(123)
(13) (12) (23)

(12) < (13) < (14) < (23) < (24) < (34) (1)



Corollary (A. Bjorner & P. Edelman, 1980)

For n > 0, the lexicographic order on transpositions of &, is
c-compatible, wherec = (12 ... n).

(12) < (13) < (14) < (23) < (24) < (34) (1)



Corollary (A. Bjorner & P. Edelman, 1980)

For n > 0, the lexicographic order on transpositions of &, is
c-compatible, wherec = (12 ... n).




Corollary (A. Bjorner & P. Edelman, 1980)

For n > 0, the lexicographic order on transpositions of &, is
c-compatible, wherec = (12 ... n).

(124)

7

(12) < (13) < (14) < (23) < (24) < (34) (1)



Corollary (A. Bjorner & P. Edelman, 1980)

For n > 0, the lexicographic order on transpositions of &, is
c-compatible, wherec = (12 ... n).

(12)(34)
(12) (34)
\ ‘/

(12) < (13) < (14) < (23) < (24) < (34) (1)



Corollary (A. Bjorner & P. Edelman, 1980)

For n > 0, the lexicographic order on transpositions of &, is
c-compatible, wherec = (12 ... n).

(12) < (13) < (14) < (23) < (24) < (34) (1)



(23)
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Theorem (C. Athanasiadis, T. Brady & C. Watt, 2007; &,
2015)

For every well-generated complex reflection group W and every
Coxeter element ¢ € W, the set of all reflections admits a
c-compatible order.




Theorem (C. Athanasiadis, T. Brady & C. Watt, 2007; &,
2015)

For every well-generated complex reflection group W and every
Coxeter element ¢ € W, the set of all reflections admits a
c-compatible order.

~ crucial component in the proof of the EL-shellability



Conjecture (# & V. Ripoll, 2020)

If Red4(g) is finite, every interval of P4(g) is chain connected
and Ag admits a g-compatible generator order, then Aq is an
EL-labeling.




Lemma (¥ & V. Ripoll, 2020)

Suppose that £4(g) = 2. There exists a g-compatible order of A,
if and only if P4 (g) is Hurwitz-connected.




Lemma (¥ & V. Ripoll, 2020)

Suppose that £4(g) = 2. There exists a g-compatible order of A,
if and only if P4 (g) is Hurwitz-connected.

~~ does not extend to £4(g) > 2



Theorem (3% & V. Ripoll, 2020)

If Red4(g) is finite, P4 (g) is chain connected and Ag admits a
g-compatible generator order, then P(g) is Hurwitz-connected.




Theorem (3% & V. Ripoll, 2020)

If Red4(g) is finite, P4 (g) is chain connected and Ag admits a
g-compatible generator order, then P(g) is Hurwitz-connected.

Corollary (# & V. Ripoll, 2020)

If Red4(g) is finite and Ag is an EL-labeling, then P4(g) is
Hurwitz-connected.




e Hurwitz-transitivity does not necessarily imply rank-2
Hurwitz-transitivity

G={(rstu|rr=s%2=u’rs=srtu=ut
rt = ts = su = ur,st = tr = ru = us)
grp

rrt




e Hurwitz-transitivity does not necessarily imply rank-2
Hurwitz-transitivity

G={(rstu|rr=s%2=u’rs=srtu=ut
rt = ts = su = ur,st = tr = ru = us)
grp

rrt
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e Hurwitz-transitivity does not necessarily imply rank-2
Hurwitz-transitivity

G={(rstu|rr=s%2=u’rs=srtu=ut
rt = ts = su = ur,st = tr = ru = us)
grp

rrt

P(rrt) // \\
rt rr 7S ru

I

r S



e Hurwitz-transitivity does not necessarily imply rank-2
Hurwitz-transitivity

G={(rstu|rr=s%2=u’rs=srtu=ut

rt=1ts =su=ur,st =tr=ru= us>grp

rrt trr

JE(rrt) rur
rsu/ \usr

tss sus sst



e Hurwitz-transitivity does not necessarily imply
shellability
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e Hurwitz-transitivity does not necessarily imply
shellability

G= <r,s,t,u,v | P :sg’,t2 = u? :vz,rs = sr,tu = uv = ut,

ut =tv=ou,rt =ts =sv =ovr,rv = Vs = su = ur,
ru = us = st = tr)

grp
_ strr ————sstr __
trrr AN / ssst
%(7’7’#) / srur susr A \
rurr ~ \& = ssus
AN srsi /




@ existence of a compatible order does not necessarily
imply shellability

G = (r,s,t,u,0,w | commutations, rst = uvw>grp

P(rst)
rst

//\\
\>< ><| \X X\

\\//
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o well covered: if b € Ag is not <-minimal, there exists
some a < b such that 2 and b have a common upper
cover in P4(g)
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@ totally well covered: every interval is well covered

Theorem (% & V. Ripoll, 2020)

Let < be a total order of Aq. Then, Ag is an EL-labeling of P4(g)
with respect to < if and only if < is g-compatible and P (g) is
totally well covered with respect to <.




o fix a total order < of A,

o well covered: if b € Ag is not <-minimal, there exists
some a < b such that 2 and b have a common upper
cover in P4(g)

@ totally well covered: every interval is well covered

Theorem (% & V. Ripoll, 2020)

Let < be a total order of Aq. Then, Ag is an EL-labeling of P4(g)
with respect to < if and only if < is g-compatible and P (g) is
totally well covered with respect to <.

~» modeled after recursive atom orders of A. Bjorner and
M. Wachs (1983)



o fix a total order < of A,

o well covered: if b € Ag is not <-minimal, there exists
some a < b such that 2 and b have a common upper
cover in P4(g)

@ totally well covered: every interval is well covered

Theorem (% & V. Ripoll, 2020)

If Red4(g) is finite and P4 (g) admits a g-compatible order < of
Ag and P, (g) is totally well covered with respect to <, then
P, (g) is chain connected, Hurwitz-connected and shellable.




o fix a total order < of A,

o well covered: if b € Ag is not <-minimal, there exists
some a < b such that 2 and b have a common upper
cover in P4(g)

@ totally well covered: every interval is well covered

Conjecture (¢ & V. Ripoll, 2020)

If every interval of P4(g) is chain connected and there exists a
g-compatible order < of Ay, then P, (g) is totally well covered
with respect to <.




e The Cycle Graph
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@ cycle graph: labeled directed graph
Ta(g) & (Vg Eg 05), where:
° Vg déf Ag
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@ cycle graph: labeled directed graph
def
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o ap((a,b)) % b
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@ cycle graph: labeled directed graph
def
Talg) =

o Vo & A,

o B, © {(a,b) | abe B}
o ap((a,b)) % b

0 B {heG|tah)=2and h <pe g}

(Vg, Eg, 0g), where:

Lemma (3 & V. Ripoll, 2020)

For any h € Bg, the set of edges labeled by h in T 4(g) is a disjoint
union of directed cycles. Each such cycle corresponds to a
connected component of 7 (h).
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@ By = {heG|ls(h)=2and h <y g}

@ defect: minimal number of edges to be removed so that
the remaining graph is acyclic ~ df(g)



def

@ By = {heG|ly(h)=2andh <y.g}

@ defect: minimal number of edges to be removed so that
the remaining graph is acyclic ~ df(g)

Proposition (¢ V. Ripoll, 2020)

Forany g € G, df(g) > |Bs|. Moreover, df(g) = |By| if and only
if PA(g) admits a g-compatible order of A,.
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unique <-rising factorization of i ~T7(g)
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@ fix a g-compatible order < of A,

@ reduced cycle graph: for every h € B; remove the
unique <-rising factorization of i ~T7(g)

@ let — denote the dual of the order induced by I';(g)

Proposition (¢ & V. Ripoll, 2020)

The order — is total (and therefore equal to <) if and only if
I'7(g) is connected (as a directed graph).




@ fix a g-compatible order < of A,

@ reduced cycle graph: for every h € B; remove the
unique <-rising factorization of i ~T7(g)

@ let — denote the dual of the order induced by I';(g)

Proposition (¢ & V. Ripoll, 2020)

P4(g) is well covered with respect to < if and only if T3 (g) has a
unique sink. In particular, if — is total, then P4(g) is well
covered.
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Theorem (% & V. Ripoll, 2020)

Let £4(g) > 3 such that Red4(g) is finite, and let P4(g) be a
factorization poset in which every interval is chain-connected.
Suppose that there is some a € Aq that lies in a unique
monochromatic cycle of T 4(g) which is not a loop. If there exists a

g-compatible order < of Ag, then P4(g) is totally well covered
with respect to <.
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Theorem (% & V. Ripoll, 2020)

Let £4(g) > 3 such that Red4(g) is finite, and let P4(g) be a
factorization poset in which every interval is chain-connected.
Suppose that there is some a € Aq that lies in a unique
monochromatic cycle of T 4(g) which is not a loop. If there exists a

g-compatible order < of Ag, then P4(g) is totally well covered
with respect to <.

@ idea: characterize the cycle graphs that admit a
compatible order

@ there are two non-trivial options




@ are factorization posets of quasi-Coxeter elements in
(well-generated) reflection groups shellable?

@ are factorization posets of cycles (12 ... kn+1) in the
subgroup of Sy, 1 generated by all (k + 1)-cycles
shellable?



are factorization posets of quasi-Coxeter elements in
(well-generated) reflection groups shellable?

@ are factorization posets of cycles (12 ... kn+1) in the
subgroup of Sy, 1 generated by all (k + 1)-cycles
shellable?

e study Hurwitz graphs from a graph-theoretic
perspective



Thank You.



.. group; A C G .. generating set; /4 .. word length

G=(rst| rzzs3zt3:]l,t:rs>grp

st tr ts tt sts sst



.. group; A C G .. generating set; /4 .. word length

G=(rst| rzzs3zt3:]l,t:rs>grp

st tr ts tt sts sst

r=(12)(34)
s=(123)
t=(243)



@ G .. group; A C G .. generating set; /4 .. word length

G=(rst| rzzs3zt3:]l,t:rs>grp

(1) (12)(34) (123) (243) (134) (132)
(124) (142) (143) (234) (14)(23) (13)(24)
r=(12)(34)
s=(123)

t=(243)



@ G .. group; A C G .. generating set; /4 .. word length

_ 2 _ B3 _ B3 _ g
Ay =(rst|rr=s=t —]l,t—rs>grp

(1) (12)(34) (123) (243) (134) (132)
(124) (142) (143) (234) (14)(23) (13)(24)
r=(12)(34)
s=(123)

t=(243)
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