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Sperner’s Theorem

[n] = {1, 2, . . . , n} for n ∈N

antichain: set of pairwise incomparable subsets of [n]

Theorem (E. Sperner, 1928)

The maximal size of an antichain of [n] is ( n
b n

2 c
).
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Sperner’s Theorem

k-family: family of subsets of [n] that can be written as
a union of at most k antichains

Theorem (P. Erdős, 1945)
The maximal size of a k-family of [n] is the sum of the k largest
binomial coefficients.
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G(d, d, n): group of monomial (n× n)-matrices, where
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For n ≥ 1, the group G(1, 1, n) is isomorphic to the symmetric
group Sn.
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G(d, d, n): group of monomial (n× n)-matrices, where
non-zero entries are dth roots of unity
product of non-zero entries is 1

Observation
For d, n ≥ 1 the group G(d, d, n) is a normal subgroup of index d
in µd oSn, where µd is the cyclic group of dth roots of unity.
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1(0), . . . , n(0), 1(1), . . . , n(1), . . . , 1(d−1), . . . , n(d−1)

}
w ∈ G(d, d, n) satisfies w

(
k(s)
)
= π(k)(s+tk)

∑n
k=1 tk ≡ 0 (mod d)

π ∈ Sn, and tk depends on w and k
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 π = [5, 1, 3, 2, 4]
t = (0, 0, 0, 1, 1)
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elements can be decomposed into “cycles”:((
k(t1)

1 . . . k(tr)
r

))
=
(

k(t1)
1 . . . k(tr)

r

)(
k(t1+1)

1 . . . k(tr+1)
r

)
· · ·
(

k(t1+d−1)
1 . . . k(tr+d−1)

r

)
,

and[
k(t1)

1 . . . k(tr)
r

]
s
=
(

k(t1)
1 . . . k(tr)

r k(t1+s)
1 . . .

k(tr+s)
r . . . k(t1(d−1)s)

1 . . . k(tr+(d−1)s)
r

)
.
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n = 5, d = 2


0 1 0 0 0
0 0 0 −1 0
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0 0 0 0 −1
1 0 0 0 0

  
((

1(0) 5(0) 4(1) 2(0)
))
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Observation
For d, n ≥ 1 the group G(d, d, n) is generated by

T =
{((

i(0) j(s)
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(
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1
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positions

SCD of
NCG(d,d,n)
The Groups G(d, d, n)

Noncrossing
Partition Lattices of
G(d, d, n)

A First
Decomposition

A Second
Decomposition

A Second Decomposition

bad parts: R(1)
1 and R(d−1)

2

consider the map

f2 : R(d−1)
2 → R(d−1)

n , x 7→
((

2(0) n(0)
))

x

this map is an injective involution

its image consists of permutations w ∈ R(d−1)
n with

w
(

n(d−1)
)
= 2(d−1)
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Motivation

Symmetric
Chain Decom-
positions

SCD of
NCG(d,d,n)
The Groups G(d, d, n)

Noncrossing
Partition Lattices of
G(d, d, n)

A First
Decomposition

A Second
Decomposition

A Second Decomposition

bad parts: R(1)
1 and R(d−1)

2

consider the map

f2 : R(d−1)
2 → R(d−1)

n , x 7→
((

2(0) n(0)
))

x

this map is an injective involution
its image is the interval[((

1(0) n(d−1) 2(d−1)
))

,
((

1(0) n(d−1) 2(d−1) . . . (n− 1)(d−1)
))]

T
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NCG(d,d,n)
The Groups G(d, d, n)

Noncrossing
Partition Lattices of
G(d, d, n)

A First
Decomposition

A Second
Decomposition

A Second Decomposition

bad parts: R(1)
1 and R(d−1)

2

consider the map

f2 : R(d−1)
2 → R(d−1)

n , x 7→
((

2(0) n(0)
))

x

Lemma ( , 2015)

The interval
(

f2
(

R(d−1)
2

)
,≤T

)
is isomorphic to NCG(1,1,n−2).
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Noncrossing
Partition Lattices of
G(d, d, n)

A First
Decomposition

A Second
Decomposition

A Second Decomposition

bad parts: R(1)
1 and R(d−1)

2

consider the map

f2 : R(d−1)
2 → R(d−1)

n , x 7→
((

2(0) n(0)
))

x

define D2 = R(d−1)
2 ] f2

(
R(d−1)

2

)
, and D2 = (D2,≤T)
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SCD of
NCG(d,d,n)
The Groups G(d, d, n)

Noncrossing
Partition Lattices of
G(d, d, n)

A First
Decomposition

A Second
Decomposition

A Second Decomposition

bad parts: R(1)
1 and R(d−1)

2

consider the map

f2 : R(d−1)
2 → R(d−1)

n , x 7→
((

2(0) n(0)
))

x

define D2 = R(d−1)
2 ] f2

(
R(d−1)

2

)
, and D2 = (D2,≤T)

Lemma ( , 2015)
The poset D2 is isomorphic to 2×NCG(1,1,n−2). Moreover, its
least element has length 1, and its greatest element has length
n− 1.
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SCD of
NCG(d,d,n)
The Groups G(d, d, n)

Noncrossing
Partition Lattices of
G(d, d, n)

A First
Decomposition

A Second
Decomposition

A Second Decomposition

bad parts: R(1)
1 and R(d−1)

2

define D = R(d−1)
n \

(
f1
(

R(1)
1

)
] f2

(
R(d−1)

2

))
, and

D = (D,≤T)

Lemma ( , 2015)

The poset D is isomorphic to
⊎n−1

i=3 NCG(1,1,i−2) ×NCG(1,1,n−i).
Morever, its minimal elements have length 2, and its maximal
elements have length n− 2.
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The Groups G(d, d, n)

Noncrossing
Partition Lattices of
G(d, d, n)

A First
Decomposition

A Second
Decomposition

The Main Result

Theorem ( , 2015)
For d, n ≥ 2 the lattice NCG(d,d,n) admits a symmetric chain
decomposition. Consequently, it is Peck.
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Motivation

Symmetric
Chain Decom-
positions

SCD of
NCG(d,d,n)
The Groups G(d, d, n)

Noncrossing
Partition Lattices of
G(d, d, n)

A First
Decomposition

A Second
Decomposition

Example: NCG(3,3,3)

((
(1(0)

))

((
1(0) 3(1)

)) ((
2(0) 3(1)

)) ((
2(0) 3(2)

)) ((
1(0) 2(0)

)) ((
1(0) 2(2)

)) ((
1(0) 3(0)

)) ((
1(0) 3(2)

)) ((
2(0) 3(0)

))

((
1(0) 2(0) 3(1)

))((
1(0) 3(1) 2(2)

))((
1(0) 3(0) 2(2)

)) [
1(0)

]
1

[
3(0)

]
2

[
2(0)

]
1

[
3(0)

]
2

((
1(0) 2(0) 3(2)

))((
1(0) 2(0) 3(0)

))((
1(0) 3(2) 2(2)

))

[
1(0) 2(0)

]
1

[
3(0)

]
2
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Partition Lattices of
G(d, d, n)

A First
Decomposition

A Second
Decomposition

Example: NCG(3,3,3)

((
(1(0)

))

((
1(0) 3(1)

)) ((
2(0) 3(1)

)) ((
2(0) 3(2)

)) ((
1(0) 2(0)

)) ((
1(0) 2(2)

)) ((
1(0) 3(0)

)) ((
1(0) 3(2)

)) ((
2(0) 3(0)

))

((
1(0) 2(0) 3(1)

))((
1(0) 3(1) 2(2)

))((
1(0) 3(0) 2(2)

)) [
1(0)

]
1

[
3(0)

]
2

[
2(0)

]
1

[
3(0)

]
2

((
1(0) 2(0) 3(2)

))((
1(0) 2(0) 3(0)

))((
1(0) 3(2) 2(2)

))

[
1(0) 2(0)

]
1

[
3(0)

]
2

26 / 27



SCD and SSP
for NCP

Henri Mühle

Motivation

Symmetric
Chain Decom-
positions

SCD of
NCG(d,d,n)
The Groups G(d, d, n)

Noncrossing
Partition Lattices of
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A First
Decomposition

A Second
Decomposition

Thank You.
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The General Setting

G(1, 1, n) and G(d, d, n) are well-generated irreducible
complex reflection groups

(1 2 . . . n) and
[
1(0) 2(0) . . . (n−1)(0)

]
1

[
n(0)

]
d−1

are

Coxeter elements
NCW(c): interval [e, c]T in (W,≤T) for some Coxeter
element c ∈ W
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The General Setting

G(1, 1, n) and G(d, d, n) are well-generated irreducible
complex reflection groups

(1 2 . . . n) and
[
1(0) 2(0) . . . (n−1)(0)

]
1

[
n(0)

]
d−1

are

Coxeter elements
NCW(c): interval [e, c]T in (W,≤T) for some Coxeter
element c ∈ W

Theorem ( , 2015)
The lattice NCW is Peck for any well-generated complex reflection
group W.
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The Proof Strategy

seen: NCG(1,1,n) and NCG(d,d,n)

remaining: NCG(d,1,n) and exceptional groups
we have NCG(2,1,n)

∼= NCG(d,1,n) for d ≥ 2 and n ≥ 1
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The Proof Strategy

seen: NCG(1,1,n) and NCG(d,d,n)

remaining: NCG(d,1,n) and exceptional groups
we have NCG(2,1,n)

∼= NCG(d,1,n) for d ≥ 2 and n ≥ 1

Theorem (V. Reiner, 1997)
The latticeNCG(2,1,n) admits a symmetric chain decomposition for
any n ≥ 1.
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A Decomposition Argument

P .. graded poset of rank n
P [i] .. subposet of P with i largest ranks removed
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A Decomposition Argument

P .. graded poset of rank n
P [i] .. subposet of P with i largest ranks removed

P [3]
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A Decomposition Argument

P .. graded poset of rank n
P [i] .. subposet of P with i largest ranks removed

P [4]
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A Decomposition Argument

P .. graded poset of rank n
P [i] .. subposet of P with i largest ranks removed

Proposition ( , 2015)

A graded poset P of rank n is strongly Sperner if and only if P [i]
is Sperner for all i ∈ {0, 1, . . . , n}.

antichains in P [i] are antichains in P [s] for s < i
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Proposition ( , 2015)
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antichains in P [i] are antichains in P [s] for s < i
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A Decomposition Argument

SAGE has a fast implementation to compute the size of
the largest antichain of a poset

30 / 27



SCD and SSP
for NCP

Henri Mühle

A Decomposition Argument

SAGE has a fast implementation to compute the width
of a poset

30 / 27



SCD and SSP
for NCP

Henri Mühle

A Decomposition Argument

SAGE has a fast implementation to compute the width
of a poset

Theorem ( , 2015)
The lattice NCW is Peck for any well-generated exceptional
complex reflection group W.
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m-Divisible Noncrossing Partition Posets

W .. well-generated complex reflection group; c ..
Coxeter element of W
m-divisible noncrossing partition: m-multichain of
noncrossing partitions  NC(m)

W (c)

(w)m = (w1, w2, . . . , wm) with w1 ≤T w2 ≤T · · · ≤T wm ≤T c
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m-Divisible Noncrossing Partition Posets

W .. well-generated complex reflection group; c ..
Coxeter element of W
m-divisible noncrossing partition: m-multichain of
noncrossing partitions  NC(m)

W (c)
m-delta sequence: sequence of “differences” of
elements in a multichain

(w)m = (w1, w2, . . . , wm) with w1 ≤T w2 ≤T · · · ≤T wm ≤T c

∂(w)m =
[
w1; w−1

1 w2, w−1
2 w3, . . . , w−1

m−1wm, w−1
m c
]
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m-Divisible Noncrossing Partition Posets

W .. well-generated complex reflection group; c ..
Coxeter element of W
m-divisible noncrossing partition: m-multichain of
noncrossing partitions  NC(m)

W (c)
m-delta sequence: sequence of “differences” of
elements in a multichain
partial order: (u)m ≤ (v)m if and only if

∂(u)m ≤T ∂(v)m  NC(m)
W (c)

Question (D. Armstrong, 2009)

Are the posets NC(m)
W strongly Sperner for any W and any

m ≥ 1?
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m-Divisible Noncrossing Partition Posets

affirmative answer for m = 1

Question (D. Armstrong, 2009)

Are the posets NC(m)
W strongly Sperner for any W and any

m ≥ 1?
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m-Divisible Noncrossing Partition Posets

affirmative answer for m = 1
what about m > 1?

NC(m)
W is antiisomorphic to an order ideal in

(
NCW

)m(
NCW

)m is Peck

NC(m)
W is not rank-symmetric no symmetric chain

decomposition

Question (D. Armstrong, 2009)

Are the posets NC(m)
W strongly Sperner for any W and any

m ≥ 1?
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Example: NC(2)G(1,1,4)

(
(1), (1)

) (
(1), (1 2)

) (
(1), (1 3)

) (
(1), (2 3)

) (
(1), (1 2 3)

)

(
(1 2), (1 2)

) (
(1 3), (1 3)

) (
(2 3), (2 3)

) (
(1 3), (1 2 3)

)(
(2 3), (1 2 3)

)(
(1 2), (1 2 3)

)

(
(1 2 3), (1 2 3)

)
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