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o [n]={1,2,...,n}forneN

@ antichain: set of pairwise incomparable subsets of [n]

Theorem (E. Sperner, 1928)

The maximal size of an antichain of [n] is (Lg )-




@ /-family: family of subsets of [n] that can be written as
a union of at most k antichains

Theorem (P. Erdds, 1945)

The maximal size of a k-family of [n] is the sum of the k largest
binomial coefficients.




@ poset perspective:

e antichain of [1] +— antichain in the Boolean lattice 3,
o binomial coefficients «— rank numbers of 5,



@ poset perspective:

e antichain of [1] +— antichain in the Boolean lattice 3,
o binomial coefficients «— rank numbers of 5,

@ P .. graded poset of rank n

@ k-Sperner: size of a k-family does not exceed sum of k
largest rank numbers

@ strongly Sperner: k-Sperner for allk <n



@ a strongly Sperner poset



@ a Sperner poset that is not 2-Sperner



@ a Sperner poset that is not 2-Sperner



@ a 2-Sperner poset that is not Sperner



@ a 2-Sperner poset that is not Sperner



@ strongly Sperner posets:

o Boolean lattices
divisor lattices
lattices of noncrossing set partitions
Bruhat posets of finite Coxeter groups
weak order lattice of Hj

@ non-Sperner posets:

o lattices of set partitions
o geometric lattices
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@ strongly Sperner posets:
@ Boolean lattices
divisor lattices (symmetric chain decompositions)

lattices of noncrossing set partitions
Bruhat posets of finite Coxeter groups
weak order lattice of H3  (no symmetric chain decomposition)

@ non-Sperner posets:

o lattices of set partitions (of very large sets...)
e geometric lattices (certain bond lattices of graphs)
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© Symmetric Chain Decompositions



@ P .. graded poset of rank n
@ decomposition



@ P .. graded poset of rank n

@ symmetric decomposition
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@ symmetric decomposition
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@ symmetric decomposition
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@ P .. graded poset of rank n

@ symmetric decomposition
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@ P .. graded poset of rank n

@ symmetric decomposition



@ P .. graded poset of rank n

@ symmetric chain decomposition



@ P .. graded poset of rank n

Theorem (Folklore)

If P admits a symmetric chain decomposition, then P is strongly
Sperner.




@ P .. graded poset of rank n

Theorem (Folklore)

If P and Q admit a symmetric chain decomposition, then so does
P x O.




@ P .. graded poset of rank 1; N; .. size of it" rank

@ rank-symmetric: N; = N,,_;
@ rank-unimodal: Ng <--- < N; > --- > Ny

@ Peck: strongly Sperner, rank-symmetric,
rank-unimodal

Theorem (Folklore)

If P admits a symmetric chain decomposition, then P is Peck.




@ P .. graded poset of rank 1; N; .. size of it" rank
@ rank-symmetric: N; = N,,_;
@ rank-unimodal: Ng <--- < N; > --- > Ny

@ Peck: strongly Sperner, rank-symmetric,
rank-unimodal

Theorem (Folklore)
If P and Q are Peck, then sois P x Q.
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€@ Motivation
© Symmetric Chain Decompositions

€ Symmetric Chain Decompositions of NC Gddn)
@ The Groups G(d,d, n)



@ G(d,d,n): group of monomial (1 x n)-matrices, where

@ non-zero entries are 4 roots of unity
o product of non-zero entries is 1

n=5d=1
1100 0
0 0 0 1 0
0 0 1 0 0
000 0 -1
100 0 0O



@ G(d,d,n): group of monomial (1 x 1)-matrices, where

@ non-zero entries are 4 roots of unity
o product of non-zero entries is 1

n=5d=1
Nope! - /1 1 0 0 0
0001 O
0010 O
0000 -1
1000 O



@ G(d,d,n): group of monomial (1 x n)-matrices, where

@ non-zero entries are 4 roots of unity
o product of non-zero entries is 1

n=>5d=1
0100 O
0 0 0 1 0
0010 O
0000 -1
1 00 0 O



@ G(d,d,n): group of monomial (1 x n)-matrices, where

@ non-zero entries are 4" roots of unity
o product of non-zero entries is 1

n=>5d=1
0100 O
0001 O
0010 O
0000 —1 |+ Nope!
1 00 0 O



@ G(d,d,n): group of monomial (1 x n)-matrices, where

@ non-zero entries are 4 roots of unity
o product of non-zero entries is 1

n=5d=1

_ o O o o
SO OO
OO Rk OO
o O OO
Ok, O OO



@ G(d,d,n): group of monomial (1 x n)-matrices, where

@ non-zero entries are 4 roots of unity
o product of non-zero entries is 1

n=>5d=2
0100 O
0 0 0 1 0
0010 O
0000 -1
1 00 0 O



@ G(d,d,n): group of monomial (1 x n)-matrices, where

@ non-zero entries are 4 roots of unity
e product of non-zero entries is 1

n=>5d=2
0100 O
0001 O
0010 O
0000 —1 |+ Nope!
1 00 0 O



@ G(d,d,n): group of monomial (1 x n)-matrices, where

@ non-zero entries are 4 roots of unity
o product of non-zero entries is 1

n=>5d=2
010 O 0
0 0 0 -1 0
0 0 1 0 0
000 O -1
100 O 0



@ G(d,d,n): group of monomial (1 x n)-matrices, where

@ non-zero entries are 4 roots of unity
o product of non-zero entries is 1

Observation

Forn > 1, the group G(1,1,n) is isomorphic to the symmetric
group &y,




@ G(d,d,n): group of monomial (1 x n)-matrices, where

@ non-zero entries are 4 roots of unity
o product of non-zero entries is 1

Observation

Ford,n > 1 the group G(d,d, n) is a normal subgroup of index d
in p; 1 &, where p, is the cyclic group of d'" roots of unity.




@ subgroups of &4,, permuting elements of

{10, a0, n®,. 16D, 0]

o w € G(d,d, n) satisfies w(k(5)> = rt(k) (s+H)

° Y/ 14 =0 (mod d)
o 7 € 6y, and t; depends on w and k



@ subgroups of &4,, permuting elements of

{10, a0, n®,. 16D, 0]

n=>5d=2

010 0 O

0010 T = [51,3,2,4]
00100 ¢ = (0,0,0,1,1)
000 0 -1 I
100 0 0




@ elements can be decomposed into “cycles”:

(K k) = (6 k) (k)
(D),

and

k] = (R

) Ry,

S






Observation

Ford,n > 1 the group G(d,d, n) is generated by

T:{((i(o)]‘(s)» \1§i<j§n,0§s<d}.




o /7 .. minimal length of decomposition into elements of
T

Observation

Ford,n > 1 the group G(d,d, n) is generated by

T:{((i(o)]‘(s)» \1§i<j§n,0§s<d}.




@ absolute order: u <r v if and only if
(1(v) = Lr(u) + br(u=1v)



@ absolute order: u <r v if and only if
(1(v) = Lr(u) + br(u=1v)
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€ Symmetric Chain Decompositions of NC Gddn)

@ Noncrossing Partition Lattices of G(d,d, n)



® NCq1,1,): interval [e, c]r in (G(1,1,n), <r) for
c=(12...n)



® NCq1,1,): interval [e, c]r in (G(1,1,n), <r) for
c=(12...n)
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® NCq (44, interval [e, y]7 in (G(d,d, n), <t) for
v = [1<o> 200) (”_1)(0)]1[”(0)}%1



® NCq (44, interval [e, y]7 in (G(d,d, n), <t) for
v = [1<o> 200) (”_1)(0)]1[”(0%4
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® NCq (44, interval [e, y]7 in (G(d,d, n), <t) for
v = [1<o> 200) (n—1)<0>]l[n<0>]
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Theorem (R. Simion & D. Ullmann, 1991)

The lattice NC G(1,1,n) admits a symmetric chain decomposition for
eachn > 1.




o Rk {w <T c ‘ w — k} 'R,k Rk/ST)
@ W .. disjoint set union; 2 .. 2-chain

Theorem (R. Simion & D. Ullmann, 1991)

The lattice NC G(1,1,n) admits a symmetric chain decomposition for
eachn > 1.




o Rk {w <T c ‘ w — k} 'R,k Rk/ST)
@ W .. disjoint set union; 2 .. 2-chain

Lemma (R. Simion & D. Ullmann, 1991)

We have Rq W Ry = 2 x NCq1,1,4-1), and

Ri = NCG(l,l,i*Z) X NCG(l,l,n7i+1) whenever 3 < i < n.
Moreover, this decomposition is symmetric.




(124)

(23) (34) (13) (24) (12) (14)



(124)

(23) (34) (13) (24) (12) (14)
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€ Symmetric Chain Decompositions of NC Gddn)

@ A First Decomposition






Lemma (3%, 2015)

The sets Rgs) and R,ES/) are empty for 2 < s < d as well as
2<k<nandl <s' <d-1.




Lemma (3%, 2015)

The poset Rgo) W Rgo) is isomorphic to 2 X NCg(g4n-1) -
Moreover, its least element has length 0, and its greatest element
has length n.




Lemma (3%, 2015)

The poset R,(f) is isomorphic to NCg(11,4—1) for 0 < s < d.
Moreover, its least element has length 1, and its greatest element
has length n — 1.




Lemma (3%, 2015)

The poset Rfo) is isomorphic to NCg(g 4 n—ir1) X NCq(1,1,i-2)
whenever 3 < i < n. Moreover, its least element has length 1,
and its greatest element has length n — 1.




Lemma (3%, 2015)

The poset Rfdfl) is isomorphic to NCg(11,u—iy X NCq(ad,i-1)
whenever 3 < i < n. Moreover, its least element has length 1,
and its greatest element has length n — 1.




Lemma (3%, 2015)

The poset Rgl) is isomorphic to NC G(1,1,n—2) - Moreover, its least
element has length 2, and its greatest element has length n — 1.




Lemma (3%, 2015)

The poset Rgdﬁl) is isomorphic to NC (1,1, n—) - Moreover, its
least element has length 1, and its greatest element has length
n—2.




>2<) 3(0

////\\\\
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1 (0)
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€ Symmetric Chain Decompositions of NC Gddn)

@ A Second Decomposition



@ bad parts: Rgl) and Réd_l)



@ bad parts: Rgl) and Réd_l)
@ consider the map
A RY = NCgaam (1), x v+ ((1(0) n(d‘z)))x



@ bad parts: Rgl) and Réd_l)
@ consider the map
frr R S REY, xe (100062



@ bad parts: Rgl) and Réd_l)
@ consider the map
fi:RW S REY s ((1<0> n(d‘z)))x

@ this map is an injective involution

@ its image consists of permutations w € Rsld_l) with

w(,q(dfl)) — 100



@ bad parts: Rgl) and Réd_l)
@ consider the map

frr R S REY, xe (100062
@ this map is an injective involution

@ its image is the interval

() (O (R @)



@ bad parts: Rgl) and Rgd_l)
@ consider the map
frr R S REY, xe (100062

Lemma (3%, 2015)

The interval (f1 (Rgl)), ST) is isomorphic to NC G(11,n-2)-




@ bad parts: Rgl) and Réd_l)
@ consider the map
fi:RW S REY s ((1<0> n(d‘z)))x

@ define D = Rgl) W f1 (Rgl)), and Dy = (D1, <r)



@ bad parts: Rgl) and Rgd_l)
@ consider the map
fi:RW S REY s ((1<0> n(@-2) ))x

@ define D = Rgl) W f1 (Rgl)), and Dy = (D1, <r)

Lemma (3%, 2015)

The poset D; is isomorphic to 2 x NC(1,1,4—o). Moreover, its
least element has length 1, and its greatest element has length
n—1




@ bad parts: Rgl) and Réd_l)
@ consider the map
d—
f: Ré RN NCG(aam(7), x> ((2(0) n(o)))x



@ bad parts: Rgl) and Réd_l)
@ consider the map
f: Rgd_l) SRV x ((2(0) n(o)))x



@ bad parts: Rgl) and Réd_l)
@ consider the map
LR S RETY, v (200 00))x

@ this map is an injective involution

@ its image consists of permutations w € Rsld_l) with

w<n(d71)> — p(d-1)



@ bad parts: Rgl) and Réd_l)
@ consider the map

LR S RETY, v (200 00))x
@ this map is an injective involution

@ its image is the interval

[((1(0) nd=1) z(d—n)), ((1@) nld=1) 2d=1) (n_1><d—1>))h



@ bad parts: Rgl) and Rgd_l)
@ consider the map
LR S RETY, v (200 00))x

Lemma (3%, 2015)

The interval (fz (Réd_l)), ST) is isomorphic to NCG(l,l,n—2)-




@ bad parts: Rgl) and Réd_l)

1) consider the map

HRTYD S RIED .y ((2(0) n(o)))x

@ define D, = Rgd_l) W (Réd_1)>, and D, = (D3, <)




@ bad parts: Rgl) and Rgd_l)
° consider the map

f2:R L REY xs <<2(0) n(o)))x

o define D, = Rgd_l) Wh (Rgd_1)>, and D, = (Dy, <r)

Lemma (3%, 2015)

The poset D, is isomorphic to 2 x NC(1,1,4—o). Moreover, its
least element has length 1, and its greatest element has length
n—1




@ bad parts: Rgl) and Rgd_l)

o define D = R\ (f1 (Rg“) W (Rg"‘”)), and
D= (D,<r)

Lemma (3%, 2015)

The poset D is isomorphic to W!—3' NC c(11,i—2) X NCG1,n—i)-
Morever, its minimal elements have length 2, and its maximal
elements have length n — 2.




Theorem (3%, 2015)

Ford,n > 2 the lattice NCG(d,d,n) admits a symmetric chain
decomposition. Consequently, it is Peck.
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Thank You.



@ G(1,1,n) and G(d,d, n) are well-generated irreducible
complex reflection groups

@ (12...n)and {1(0) 200 (11—1)(0)}1 {n(o)]d_l are

Coxeter elements



@ G(1,1,n) and G(d,d, n) are well-generated irreducible
complex reflection groups

@ (12 ...n)and [1(0) 2000, (n—l)(o)}1 [n(o)]dil are

Coxeter elements

@ NCy/(c): interval [e, c]r in (W, <7) for some Coxeter
elementc € W



@ G(1,1,n) and G(d,d, n) are well-generated irreducible
complex reflection groups

@ (12...n)and {1(0) 200 (n—l)(o)}1 {n(o)]d_l are

Coxeter elements

@ NCyy(c): interval [e, c]7 in (W, <r) for some Coxeter
elementc € W

Theorem (%, 2015)

The lattice NCyy is Peck for any well-generated complex reflection
group W.




@ seen: NCq11,,) and NCq4.4,0)



@ seen: NCG(l,l,n) and NCG(d,d,n)
e remaining: NCg(41,) and exceptional groups



@ seen: NCG(l,l,n) and NCG(d,d,n)
e remaining: NCg(41,) and exceptional groups
o we have NCg 51,4 = NCqg1m ford > 2andn > 1



@ seen: NCG(l,l,n) and NCG(d,d,n)
e remaining: NCg(41,) and exceptional groups
o we have NCg 51,4 = NCqg1m ford > 2andn > 1

Theorem (V. Reiner, 1997)

The lattice NC (21 ) admits a symmetric chain decomposition for
anyn > 1.




@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed



@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

P



@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

P



@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

P



@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

P



@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

P[2]



@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

P[2]



@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

PR




@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

P[] o




@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

P[4]



@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

Proposition (3, 2015)

A graded poset P of rank n is strongly Sperner if and only if P|i]
is Sperner foralli € {0,1,...,n}.




@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

Proposition (3, 2015)

A graded poset P of rank n is strongly Sperner if and only if P|i]
is Sperner foralli € {0,1,...,n}.

@ antichains in P[i] are antichains in P|[s] for s < i



@ SAGE has a fast implementation to compute the size of
the largest antichain of a poset



@ SAGE has a fast implementation to compute the width
of a poset



@ SAGE has a fast implementation to compute the width
of a poset

Theorem (%, 2015)

The lattice NCyy is Peck for any well-generated exceptional
complex reflection group W.




o W .. well-generated complex reflection group; c ..
Coxeter element of W

@ m-divisible noncrossing partition: m-multichain of
noncrossing partitions ~ NCW ) (c)

(W) = (w1, w2, ..., wy) withwy <pwy <7 -+ <t wy <rc



o W .. well-generated complex reflection group; c ..
Coxeter element of W

@ m-divisible noncrossing partition: m-multichain of
noncrossing partitions ~ NC‘(:; ) (c)

e m-delta sequence: sequence of “differences” of
elements in a multichain

(W)m = (w1, w2, ..., wy) withwy <gwy <7 -+ <rwy, <rc

W) = [wi;wy twa, wy tws, ..., w, b wm,wy, ]



o W .. well-generated complex reflection group; c ..
Coxeter element of W

@ m-divisible noncrossing partition: m-multichain of
noncrossin, titi N
g partitions ~+ NCy, " (c)
e m-delta sequence: sequence of “differences” of
elements in a multichain
@ partial order: (u),, < (v), if and only if
A1)y <1 (V) - NCI (c)

Question (D. Armstrong, 2009)

Are the posets NC I(X; ) strongly Sperner for any W and any
m>1?




@ affirmative answer form = 1

Question (D. Armstrong, 2009)

Are the posets NC 31; ) strongly Sperner for any W and any
m>1?




o affirmative answer for m =1
@ what about m > 1?
o NC g,n i antiisomorphic to an order ideal in (MCy)"
o (NCw)" is Peck

o NC g," ) is not rank-symmetric ~~ no symmetric chain
decomposition

Question (D. Armstrong, 2009)

Are the posets NC 31; ) strongly Sperner for any W and any
m>1?
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