SCD and SSP for NCP
 Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices

Henri Mühle

LIX (École Polytechnique)
April 05, 2016
$76^{\text {th }}$ Séminaire Lotharingien de Combinatoire, Ottrott

Sperner's Theorem

SCD and SSP for NCP
Henri Mühle

Motivation

- $[n]=\{1,2, \ldots, n\}$ for $n \in \mathbb{N}$
- antichain: set of pairwise incomparable subsets of $[n]$

Theorem (E. Sperner, 1928)
 The maximal size of an antichain of $[n]$ is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

Sperner's Theorem

SCD and SSP for NCP

Henri Mühle

Motivation

- k-family: family of subsets of $[n]$ that can be written as a union of at most k antichains

Theorem (P. Erdős, 1945)

The maximal size of a k-family of $[n]$ is the sum of the k largest binomial coefficients.

A Generalization

SCD and SSP for NCP

Henri Mühle

Motivation
symmetric Chain Decor positions

- poset perspective:
- antichain of $[n] \longleftrightarrow$ antichain in the Boolean lattice \mathcal{B}_{n} - binomial coefficients \longleftrightarrow rank numbers of \mathcal{B}_{n}
- \mathcal{P}.. graded poset of rank n
- k-Sperner: size of a k-family d ees not exceed sum of k largest rank numbers
- strongly Sperner: k-Sperner for all $k \leq n$

A Generalization

```
SCD and SSP
    for NCP
- poset perspective:
- antichain of \([n] \longleftrightarrow\) antichain in the Boolean lattice \(\mathcal{B}_{n}\) - binomial coefficients \(\longleftrightarrow\) rank numbers of \(\mathcal{B}_{n}\)
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(k\)-Sperner: size of a \(k\)-family does not exceed sum of \(k\) largest rank numbers
- strongly Sperner: \(k\)-Sperner for all \(k \leq n\)

\section*{Examples}

\author{
SCD and SSP for NCP \\ Henri Mühle
}

Motivation
Symmetric
Chain Decom
- a strongly Sperner poset


\section*{Examples}
SCD and SSP
for NCP
Henri Mühle

Motivation
Symmetric Chain Decompositions
- a Sperner poset that is not 2-Sperner


\section*{Examples}

\author{
SCD and SSP for NCP \\ Henri Mühle
}

Motivation
Symmetric Chain Decompositions
- a Sperner poset that is not 2-Sperner


\section*{Examples}
SCD and SSP
for NCP
Henri Mühle

Motivation
- a 2-Sperner poset that is not Sperner


\section*{Examples}
SCD and SSP
for NCP
Henri Mühle

Motivation
- a 2-Sperner poset that is not Sperner


\section*{Examples}
- strongly Sperner posets:
- Boolean lattices
- divisor lattices
- lattices of noncrossing set partitions
- Bruhat posets of finite Coxeter groups
- weak order lattice of \(\mathrm{H}_{3}\)
- non-Sperner posets:
- lattices of set partitions
- geometric lattices

\section*{Examples}

SCD and SSP for NCP
- strongly Sperner posets:
- Boolean lattices
- divisor lattices
(symmetric chain decompositions)
- lattices of noncrossing set partitions
- Bruhat posets of finite Coxeter groups
- weak order lattice of \(\mathrm{H}_{3}\)
- non-Sperner posets:
- lattices of set partitions
- geometric lattices

\section*{Examples}

SCD and SSP for NCP
- strongly Sperner posets:
- Boolean lattices
- divisor lattices
(symmetric chain decompositions)
- lattices of noncrossing set partitions
- Bruhat posets of finite Coxeter groups
- weak order lattice of \(\mathrm{H}_{3}\) (no symmetric chain decomposition)
- non-Sperner posets:
- lattices of set partitions
- geometric lattices

\section*{Examples}

SCD and SSP for NCP
- strongly Sperner posets:
- Boolean lattices
- divisor lattices
(symmetric chain decompositions)
- lattices of noncrossing set partitions
- Bruhat posets of finite Coxeter groups
- weak order lattice of \(\mathrm{H}_{3}\) (no symmetric chain decomposition)
- non-Sperner posets:
- lattices of set partitions (of very large sets...)
- geometric lattices

\section*{Examples}

SCD and SSP for NCP
- strongly Sperner posets:
- Boolean lattices
- divisor lattices
(symmetric chain decompositions)
- lattices of noncrossing set partitions
- Bruhat posets of finite Coxeter groups
- weak order lattice of \(\mathrm{H}_{3}\) (no symmetric chain decomposition)
- non-Sperner posets:
- lattices of set partitions
(of very large sets...)
- geometric lattices

\section*{Outline}
(2) Symmetric Chain Decompositions
(3) Symmetric Chain Decompositions of \(\mathcal{N C}_{G(d, d, n)}\)
- The Groups \(G(d, d, n)\)
- Noncrossing Partition Lattices of \(G(d, d, n)\)
- A First Decomposition
- A Second Decomposition

\section*{Outline}

SCD and SSP for NCP

Henri Mühle

Motivation
- Motivation

Symmetric Chain Decompositions
(2) Symmetric Chain Decompositions
- The Groups \(G(d, d, n)\)
- Noncrossing Partition Lattices of \(G(d, d, n)\)
- A First Decomposition
- A Second Decomposition

\section*{Poset Decompositions}

\author{
SCD and SSP for NCP \\ Henri Mühle
}

\section*{Motivation}

Symmetric
Chain Decompositions
- \(\mathcal{P}\).. graded poset of rank \(n\)
- decomposition


\section*{Poset Decompositions}

\author{
SCD and SSP for NCP \\ Henri Mühle
}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- symmetric decomposition


\section*{Poset Decompositions}

\author{
SCD and SSP for NCP \\ Henri Mühle
}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- symmetric decomposition


\section*{Poset Decompositions}

\author{
SCD and SSP for NCP \\ Henri Mühle
}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- symmetric decomposition


\section*{Poset Decompositions}

\author{
SCD and SSP for NCP \\ Henri Mühle
}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- symmetric decomposition


\section*{Poset Decompositions}

\author{
SCD and SSP for NCP \\ Henri Mühle
}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- symmetric decomposition


\section*{Poset Decompositions}

\author{
SCD and SSP for NCP \\ Henri Mühle
}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- symmetric chain decomposition


\section*{Symmetric Chain Decompositions}
\begin{tabular}{l} 
SCD and SSP \\
for NCP
\end{tabular}
Henri Mühle
- \(\mathcal{P}\).. graded poset of rank \(n\)

\section*{Theorem (Folklore)}

If \(\mathcal{P}\) admits a symmetric chain decomposition, then \(\mathcal{P}\) is strongly Sperner.

\section*{Symmetric Chain Decompositions}
\begin{tabular}{l} 
SCD and SSP \\
for NCP
\end{tabular}
Henri Mühle
- \(\mathcal{P}\).. graded poset of rank \(n\)

\section*{Theorem (Folklore) \\ If \(\mathcal{P}\) and \(\mathcal{Q}\) admit a symmetric chain decomposition, then so does \(\mathcal{P} \times \mathcal{Q}\).}

\section*{Symmetric Chain Decompositions}

SCD and SSP
for NCP
Henri Mühle

Symmetric Chain Decompositions
- \(\mathcal{P}\).. graded poset of rank \(n ; N_{i}\).. size of \(i^{\text {th }}\) rank
- rank-symmetric: \(N_{i}=N_{n-i}\)
- rank-unimodal: \(N_{0} \leq \cdots \leq N_{j} \geq \cdots \geq N_{n}\)
- Peck: strongly Sperner, rank-symmetric, rank-unimodal

\section*{Theorem (Folklore)}

If \(\mathcal{P}\) admits a symmetric chain decomposition, then \(\mathcal{P}\) is Peck.

\section*{Symmetric Chain Decompositions}

SCD and SSP
for NCP
Henri Mühle

Symmetric
Chain Decompositions
- \(\mathcal{P}\).. graded poset of rank \(n ; N_{i}\).. size of \(i^{\text {th }}\) rank
- rank-symmetric: \(N_{i}=N_{n-i}\)
- rank-unimodal: \(N_{0} \leq \cdots \leq N_{j} \geq \cdots \geq N_{n}\)
- Peck: strongly Sperner, rank-symmetric, rank-unimodal

\section*{Theorem (Folklore) \\ If \(\mathcal{P}\) and \(\mathcal{Q}\) are Peck, then so is \(\mathcal{P} \times \mathcal{Q}\).}

\section*{Outline}

SCD and SSP for NCP

Henri Mühle
Motivation

Symmetric Chain Decompositions
(3) Symmetric Chain Decompositions of \(\mathcal{N C} C_{G(d, d, n)}\)
- The Groups \(G(d, d, n)\)
- Noncrossing Partition Lattices of \(G(d, d, n)\)
- A First Decomposition
- A Second Decomposition

\section*{Outline}

SCD and SSP for NCP

Henri Mühle
(1) Motivation

2 Symmetric Chain Decompositions
(3) Symmetric Chain Decompositions of \(\mathcal{N C}{ }_{G(d, d, n)}\)
- The Groups \(G(d, d, n)\)
- Noncrossing Partition Lattices of \(G(d, d, n)\)
- A First Decomposition
- A Second Decomposition

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1
\[
n=5, d=1
\]
\[
\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1
\[
n=5, d=1
\]
\[
\text { Nope! } \rightarrow\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1
\[
n=5, d=1
\]
\[
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1
\[
n=5, d=1
\]
\[
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) \leftarrow \text { Nope! }
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1
\[
n=5, d=1
\]
\[
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1
\[
n=5, d=2
\]
\[
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1
\[
n=5, d=2
\]
\[
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) \leftarrow \text { Nope! }
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1
\[
n=5, d=2
\]
\[
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}

SCD and SSP for NCP

Henri Mühte
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1

\section*{Observation}

For \(n \geq 1\), the group \(G(1,1, n)\) is isomorphic to the symmetric group \(\mathfrak{S}_{n}\).

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}

SCD and SSP
for NCP
Henri Mühte
- \(G(d, d, n)\) : group of monomial \((n \times n)\)-matrices, where
- non-zero entries are \(d^{\text {th }}\) roots of unity
- product of non-zero entries is 1

\section*{Observation}

For \(d, n \geq 1\) the group \(G(d, d, n)\) is a normal subgroup of index \(d\) in \(\mu_{d} \imath \mathfrak{S}_{n}\), where \(\mu_{d}\) is the cyclic group of \(d^{\text {th }}\) roots of unity.

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}

\section*{SCD and SSP for NCP}
- subgroups of \(\mathfrak{S}_{d n}\), permuting elements of
\[
\left\{1^{(0)}, \ldots, n^{(0)}, 1^{(1)}, \ldots, n^{(1)}, \ldots, 1^{(d-1)}, \ldots, n^{(d-1)}\right\}
\]
- \(w \in G(d, d, n)\) satisfies \(w\left(k^{(s)}\right)=\pi(k)^{\left(s+t_{k}\right)}\)
- \(\sum_{k=1}^{n} t_{k} \equiv 0(\bmod d)\)
- \(\pi \in \mathfrak{S}_{n}\), and \(t_{k}\) depends on \(w\) and \(k\)

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}

\section*{SCD and SSP for NCP}

\section*{Henri Mühle}
- subgroups of \(\mathfrak{S}_{d n}\), permuting elements of
\[
\begin{aligned}
& \left\{1^{(0)}, \ldots, n^{(0)}, 1^{(1)}, \ldots, n^{(1)}, \ldots, 1^{(d-1)}, \ldots, n^{(d-1)}\right\} \\
& n=5, d=2 \\
& \left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
\pi & t=[5,1,3,2,4] \\
t & =(0,0,0,1,1)
\end{aligned}
\end{aligned}
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}

\section*{Henri Mühle}
- elements can be decomposed into "cycles":
\[
\begin{gathered}
\left(\left(k_{1}^{\left(t_{1}\right)} \ldots k_{r}^{\left(t_{r}\right)}\right)\right)=\left(k_{1}^{\left(t_{1}\right)} \ldots k_{r}^{\left(t_{r}\right)}\right)\left(k_{1}^{\left(t_{1}+1\right)} \ldots k_{r}^{\left(t_{r}+1\right)}\right) \\
\ldots\left(k_{1}^{\left(t_{1}+d-1\right)} \ldots k_{r}^{\left(t_{r}+d-1\right)}\right),
\end{gathered}
\]
and
\[
\begin{aligned}
{\left[k_{1}^{\left(t_{1}\right)} \ldots k_{r}^{\left(t_{r}\right)}\right]_{s} } & =\left(k_{1}^{\left(t_{1}\right)} \ldots k_{r}^{\left(t_{r}\right)} k_{1}^{\left(t_{1}+s\right)} \ldots\right. \\
& \left.k_{r}^{\left(t_{r}+s\right)} \ldots k_{1}^{\left(t_{1}(d-1) s\right)} \ldots k_{r}^{\left(t_{r}+(d-1) s\right)}\right) .
\end{aligned}
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
\begin{tabular}{|c|c|c|}
\hline SCD and SSP for NCP & & \\
\hline Henri Mühle & & \\
\hline positions & \multicolumn{2}{|l|}{\(n=5, d=2\)} \\
\hline suprcas & \(\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)\) & \(\rightsquigarrow\left(\left(1^{(0)} 5^{(0)} 4^{(1)} 2^{(0)}\right)\right)\) \\
\hline
\end{tabular}

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
SCD and SSP
for NCP
Henri Mühle
Motivation
Symmetric
Chain Decom-
positions
SCD of
NC \(G(d, d, n)\)
The Groups \(G(d, d, n)\)

\section*{Observation}

For \(d, n \geq 1\) the group \(G(d, d, n)\) is generated by
\[
T=\left\{\left(\left(i^{(0)} j^{(s)}\right)\right) \mid 1 \leq i<j \leq n, 0 \leq s<d\right\} .
\]

\section*{The Groups \(G(d, d, n), d, n \geq 1\)}
- \(\ell_{T}\).. minimal length of decomposition into elements of T

\section*{Observation}

For \(d, n \geq 1\) the group \(G(d, d, n)\) is generated by
\[
T=\left\{\left(\left(i^{(0)} j^{(s)}\right)\right) \mid 1 \leq i<j \leq n, 0 \leq s<d\right\} .
\]

\section*{A Partial Order}

SCD and SSP for NCP

Henri Mühle
- absolute order: \(u \leq_{T} v\) if and only if
\[
\ell_{T}(v)=\ell_{T}(u)+\ell_{T}\left(u^{-1} v\right)
\]

\section*{A Partial Order}

\section*{SCD and SSP for NCP \\ Henri Mühle}
- absolute order: \(u \leq_{T} v\) if and only if
\[
\ell_{T}(v)=\ell_{T}(u)+\ell_{T}\left(u^{-1} v\right)
\]
\(\left(G(3,3,2), \leq_{T}\right)\)


\section*{Outline}
(1) Motivation
(2) Symmetric Chain Decompositions
(3) Symmetric Chain Decompositions of \(\mathcal{N C}{ }_{G(d, d, n)}\)
- The Groups \(G(d, d, n)\)
- Noncrossing Partition Lattices of \(G(d, d, n)\)
- A First Decomposition
- A Second Decomposition

\section*{Noncrossing Partitions Lattices}

\section*{SCD and SSP for NCP}

Henri Mühle
- \(\mathcal{N C}_{G(1,1, n)}\) : interval \([e, c]_{T}\) in \(\left(G(1,1, n), \leq_{T}\right)\) for
\[
c=(12 \ldots n)
\]

\section*{Noncrossing Partitions Lattices}


\section*{Noncrossing Partitions Lattices}

\section*{for NCP}

Henri Mühle

Motivation
Symmatric Chain Decom positions sen of

Noncrossing Partition Lattices of
- \(\mathcal{N C}_{G(1,1, n)}\) : interval \([e, c]_{T}\) in \(\left(G(1,1, n), \leq_{T}\right)\) for
\[
c=(12 \ldots n)
\]


\section*{Noncrossing Partitions Lattices}

\section*{SCD and SSP for NCP}

Henri Mühle
- \(\mathcal{N C}_{G(d, d, n)}\) : interval \([e, \gamma]_{T}\) in \(\left(G(d, d, n), \leq_{T}\right)\) for
\[
\gamma=\left[1^{(0)} 2^{(0)} \ldots(n-1)^{(0)}\right]_{1}\left[n^{(0)}\right]_{d-1}
\]

\section*{Noncrossing Partitions Lattices}

SCD and SSP for NCP

Henri Mühle

Motivation
Summatric Chain Decom positions
oen af

Noncrossing Partition Lattices of \(\mathrm{G}(d, d, n)\)

17 / 27
- \(\mathcal{N C}_{G(d, d, n)}\) : interval \([e, \gamma]_{T}\) in \(\left(G(d, d, n), \leq_{T}\right)\) for
\[
\gamma=\left[1^{(0)} 2^{(0)} \ldots(n-1)^{(0)}\right]_{1}\left[n^{(0)}\right]_{d-1}
\]
\(n=3, d=3\)


\section*{Noncrossing Partitions Lattices}

\section*{SCD and SSP for NCP}

Henri Mühle

Motivation
Surmmatric Chain Decom positions
cen of

Noncrossing Partition Lattices of \(G(d, d, n)\)
\(17 / 27\)
- \(\mathcal{N C}_{G(d, d, n)}\) : interval \([e, \gamma]_{T}\) in \(\left(G(d, d, n), \leq_{T}\right)\) for
\[
\gamma=\left[1^{(0)} 2^{(0)} \ldots(n-1)^{(0)}\right]_{1}\left[n^{(0)}\right]_{d-1}
\]


\section*{Symmetric Chain Decompositions of \(\mathcal{N C}_{G(1,1, n)}\)}

SCD and SSP for NCP

Henri Mühle

Motivation
Symmatric Chain Decom positions
ofn af
\(\mathrm{Ne}_{\mathrm{G}(\mathrm{d} \lambda, \mathrm{d},}\)

\section*{Theorem (R. Simion \& D. Ullmann, 1991)}

The lattice \(\mathcal{N C}_{G(1,1, n)}\) admits a symmetric chain decomposition for each \(n \geq 1\).

\section*{Symmetric Chain Decompositions of \(\mathcal{N C}_{G(1,1, n)}\)}
- \(R_{k}=\left\{w \leq_{T} c \mid w(1)=k\right\}, \mathcal{R}_{k}=\left(R_{k}, \leq_{T}\right)\)
- \(\uplus\).. disjoint set union; 2 .. 2-chain

\section*{Theorem (R. Simion \& D. Ullmann, 1991)}

The lattice \(\mathcal{N C}_{G(1,1, n)}\) admits a symmetric chain decomposition for each \(n \geq 1\).

\section*{Symmetric Chain Decompositions of \(\mathcal{N C}_{G(1,1, n)}\)}
- \(R_{k}=\left\{w \leq_{T} c \mid w(1)=k\right\}, \mathcal{R}_{k}=\left(R_{k}, \leq_{T}\right)\)
- \(\uplus\).. disjoint set union; 2 .. 2-chain

\section*{Lemma (R. Simion \& D. Ullmann, 1991)}

We have \(\mathcal{R}_{1} \uplus \mathcal{R}_{2} \cong \mathbf{2} \times \mathcal{N C}_{G(1,1, n-1)}\), and \(\mathcal{R}_{i} \cong \mathcal{N C}_{G(1,1, i-2)} \times \mathcal{N C} \mathcal{N}_{G(1,1, n-i+1)}\) whenever \(3 \leq i \leq n\). Moreover, this decomposition is symmetric.

Example: \(\mathcal{N C}_{G(1,1,4)}\)


Example: \(\mathcal{N C}_{G(1,1,4)}\)


\section*{Outline}

SCD and SSP for NCP

Henri Mühle
(1) Motivation
(2) Symmetric Chain Decompositions
(3) Symmetric Chain Decompositions of \(\mathcal{N C}_{G(d, d, n)}\)
- The Groups \(G(d, d, n)\)
- Noncrossing Partition Lattices of \(G(d, d, n)\)
- A First Decomposition
- A Second Decomposition

\section*{A First Decomposition}

\section*{SCD and SSP for NCP}

Henri Mühle
\[
\begin{aligned}
& \text { - } R_{k}^{(s)}=\left\{w \leq_{T} \gamma \mid w\left(1^{(0)}\right)=k^{(s)}\right\} \\
& \mathcal{R}_{k}^{(s)}=\left(R_{k}^{(s)}, \leq_{T}\right)
\end{aligned}
\]

\section*{A First Decomposition}

\section*{SCD and SSP for NCP \\ Henri Mühle}
- \(R_{k}^{(s)}=\left\{w \leq_{T} \gamma \mid w\left(1^{(0)}\right)=k^{(s)}\right\}\)
- \(\mathcal{R}_{k}^{(s)}=\left(R_{k}^{(s)}, \leq_{T}\right)\)

\section*{Lemma (覴, 2015)}

The sets \(R_{1}^{(s)}\) and \(R_{k}^{\left(s^{\prime}\right)}\) are empty for \(2 \leq s<d\) as well as \(2 \leq k<n\) and \(1 \leq s^{\prime}<d-1\).

\section*{A First Decomposition}

\section*{SCD and SSP for NCP \\ Henri Mühle}
- \(R_{k}^{(s)}=\left\{w \leq_{T} \gamma \mid w\left(1^{(0)}\right)=k^{(s)}\right\}\)
- \(\mathcal{R}_{k}^{(s)}=\left(R_{k}^{(s)}, \leq_{T}\right)\)

\section*{Lemma (覴, 2015)}

The poset \(\mathcal{R}_{1}^{(0)} \uplus \mathcal{R}_{2}^{(0)}\) is isomorphic to \(2 \times \mathcal{N C}_{G(d, d, n-1)}\). Moreover, its least element has length 0 , and its greatest element has length \(n\).

\section*{A First Decomposition}

\section*{SCD and SSP for NCP}
- \(R_{k}^{(s)}=\left\{w \leq_{T} \gamma \mid w\left(1^{(0)}\right)=k^{(s)}\right\}\)
- \(\mathcal{R}_{k}^{(s)}=\left(R_{k}^{(s)}, \leq_{T}\right)\)

\section*{Lemma (覴, 2015)}

The poset \(\mathcal{R}_{n}^{(s)}\) is isomorphic to \(\mathcal{N C}_{G(1,1, n-1)}\) for \(0 \leq s<d\). Moreover, its least element has length 1, and its greatest element has length \(n-1\).

\section*{A First Decomposition}

\section*{SCD and SSP for NCP}
- \(R_{k}^{(s)}=\left\{w \leq_{T} \gamma \mid w\left(1^{(0)}\right)=k^{(s)}\right\}\)
- \(\mathcal{R}_{k}^{(s)}=\left(R_{k}^{(s)}, \leq_{T}\right)\)

\section*{Lemma (覴, 2015)}

The poset \(\mathcal{R}_{i}^{(0)}\) is isomorphic to \(\mathcal{N C}_{G(d, d, n-i+1)} \times \mathcal{N C}_{G(1,1, i-2)}\) whenever \(3 \leq i<n\). Moreover, its least element has length 1, and its greatest element has length \(n-1\).

\section*{A First Decomposition}

\section*{SCD and SSP for NCP}
- \(R_{k}^{(s)}=\left\{w \leq_{T} \gamma \mid w\left(1^{(0)}\right)=k^{(s)}\right\}\)
- \(\mathcal{R}_{k}^{(s)}=\left(R_{k}^{(s)}, \leq_{T}\right)\)

\section*{Lemma ( \(\left(\begin{array}{c}\text { ® }\end{array}, 2015\right)\)}

The poset \(\mathcal{R}_{i}^{(d-1)}\) is isomorphic to \(\mathcal{N C}_{G(1,1, n-i)} \times \mathcal{N C}_{G(d, d, i-1)}\) whenever \(3 \leq i<n\). Moreover, its least element has length 1, and its greatest element has length \(n-1\).

\section*{A First Decomposition}

\section*{SCD and SSP for NCP}
- \(R_{k}^{(s)}=\left\{w \leq_{T} \gamma \mid w\left(1^{(0)}\right)=k^{(s)}\right\}\)
- \(\mathcal{R}_{k}^{(s)}=\left(R_{k}^{(s)}, \leq_{T}\right)\)

\section*{Lemma (}

The poset \(\mathcal{R}_{1}^{(1)}\) is isomorphic to \(\mathcal{N C}_{G(1,1, n-2)}\). Moreover, its least element has length 2 , and its greatest element has length \(n-1\).

\section*{A First Decomposition}

\section*{SCD and SSP for NCP \\ Henri Mühle}
- \(R_{k}^{(s)}=\left\{w \leq_{T} \gamma \mid w\left(1^{(0)}\right)=k^{(s)}\right\}\)
- \(\mathcal{R}_{k}^{(s)}=\left(R_{k}^{(s)}, \leq_{T}\right)\)

\section*{Lemma (酉, 2015)}

The poset \(\mathcal{R}_{2}^{(d-1)}\) is isomorphic to \(\mathcal{N C}_{G(1,1, n-2)}\). Moreover, its least element has length 1, and its greatest element has length \(n-2\).

\section*{Example: \(\mathcal{N C}_{G(3,3,3)}\)}


\section*{Example: \(\mathcal{N C}_{G(3,3,3)}\)}


\section*{Outline}

SCD and SSP for NCP

Henri Mühle
(1) Motivation

2 Symmetric Chain Decompositions
(3) Symmetric Chain Decompositions of \(\mathcal{N C} C_{G(d, d, n)}\)
- The Groups \(G(d, d, n)\)
- Noncrossing Partition Lattices of \(G(d, d, n)\)
- A First Decomposition
- A Second Decomposition

\section*{A Second Decomposition}

SCD and SSP
for NCP
Henri Mühle
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)

\section*{A Second Decomposition}

\section*{SCD and SSP for NCP}
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{1}: R_{1}^{(1)} \rightarrow N C_{G(d, d, n)}(\gamma), \quad x \mapsto\left(\left(1^{(0)} n^{(d-2)}\right)\right) x
\]

\section*{A Second Decomposition}

\section*{SCD and SSP for NCP}

\author{
Henri Mühle
}
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{1}: R_{1}^{(1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(1^{(0)} n^{(d-2)}\right)\right) x
\]

\section*{A Second Decomposition}
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{1}: R_{1}^{(1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(1^{(0)} n^{(d-2)}\right)\right) x
\]
- this map is an injective involution
- its image consists of permutations \(w \in R_{n}^{(d-1)}\) with
\[
w\left(n^{(d-1)}\right)=1^{(0)}
\]

\section*{A Second Decomposition}
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{1}: R_{1}^{(1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(1^{(0)} n^{(d-2)}\right)\right) x
\]
- this map is an injective involution
- its image is the interval
\[
\left[\left(\left(1^{(0)} n^{(d-1)}\right)\right),\left(\left(1^{(0)} n^{(d-1)}\right)\right)\left(\left(2^{(0)} \ldots(n-1)^{(0)}\right)\right)\right]_{T}
\]

\section*{A Second Decomposition}

\section*{for NCP}

Henri Mühle
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{1}: R_{1}^{(1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(1^{(0)} n^{(d-2)}\right)\right) x
\]

\section*{Lemma (\%, 2015)}

The interval \(\left(f_{1}\left(R_{1}^{(1)}\right), \leq_{T}\right)\) is isomorphic to \(\mathcal{N C} \mathcal{G}_{G(1,1, n-2)}\).

\section*{A Second Decomposition}

\section*{SCD and SSP for NCP}
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{1}: R_{1}^{(1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(1^{(0)} n^{(d-2)}\right)\right) x
\]
- define \(D_{1}=R_{1}^{(1)} \uplus f_{1}\left(R_{1}^{(1)}\right)\), and \(\mathcal{D}_{1}=\left(D_{1}, \leq_{T}\right)\)

\section*{A Second Decomposition}

SCD and SSP
for NCP
Henri Mühle
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{1}: R_{1}^{(1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(1^{(0)} n^{(d-2)}\right)\right) x
\]
- define \(D_{1}=R_{1}^{(1)} \uplus f_{1}\left(R_{1}^{(1)}\right)\), and \(\mathcal{D}_{1}=\left(D_{1}, \leq_{T}\right)\)

\section*{Lemma ( (\&iky 2015)}

The poset \(\mathcal{D}_{1}\) is isomorphic to \(2 \times \mathcal{N C}_{G(1,1, n-2)}\). Moreover, its least element has length 1, and its greatest element has length \(n-1\).

\section*{A Second Decomposition}

\section*{SCD and SSP for NCP}

Henri Mühle
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{2}: R_{2}^{(d-1)} \rightarrow N C_{G(d, d, n)}(\gamma), \quad x \mapsto\left(\left(2^{(0)} n^{(0)}\right)\right) x
\]

\section*{A Second Decomposition}

\section*{SCD and SSP for NCP}

Henri Mühle
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{2}: R_{2}^{(d-1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(2^{(0)} n^{(0)}\right)\right) x
\]

\section*{A Second Decomposition}
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{2}: R_{2}^{(d-1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(2^{(0)} n^{(0)}\right)\right) x
\]
- this map is an injective involution
- its image consists of permutations \(w \in R_{n}^{(d-1)}\) with \(w\left(n^{(d-1)}\right)=2^{(d-1)}\)

\section*{A Second Decomposition}

\section*{SCD and SSP for NCP}
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{2}: R_{2}^{(d-1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(2^{(0)} n^{(0)}\right)\right) x
\]
- this map is an injective involution
- its image is the interval
\[
\left[\left(\left(1^{(0)} n^{(d-1)} 2^{(d-1)}\right)\right),\left(\left(1^{(0)} n^{(d-1)} 2^{(d-1)} \ldots(n-1)^{(d-1)}\right)\right)\right]_{T}
\]

\section*{A Second Decomposition}

\section*{for NCP}

Henri Mühle
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{2}: R_{2}^{(d-1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(2^{(0)} n^{(0)}\right)\right) x
\]

\section*{Lemma (\%, 2015)}

The interval \(\left(f_{2}\left(R_{2}^{(d-1)}\right), \leq_{T}\right)\) is isomorphic to \(\mathcal{N C}{ }_{G(1,1, n-2)}\).

\section*{A Second Decomposition}

\section*{SCD and SSP for NCP}

\author{
Henri Mühle
}
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{2}: R_{2}^{(d-1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(2^{(0)} n^{(0)}\right)\right) x
\]
- define \(D_{2}=R_{2}^{(d-1)} \uplus f_{2}\left(R_{2}^{(d-1)}\right)\), and \(\mathcal{D}_{2}=\left(D_{2}, \leq_{T}\right)\)

\section*{A Second Decomposition}

SCD and SSP
for NCP
Henri Mühle
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- consider the map
\[
f_{2}: R_{2}^{(d-1)} \rightarrow R_{n}^{(d-1)}, \quad x \mapsto\left(\left(2^{(0)} n^{(0)}\right)\right) x
\]
- define \(D_{2}=R_{2}^{(d-1)} \uplus f_{2}\left(R_{2}^{(d-1)}\right)\), and \(\mathcal{D}_{2}=\left(D_{2}, \leq_{T}\right)\)

\section*{Lemma (\%, 2015)}

The poset \(\mathcal{D}_{2}\) is isomorphic to \(2 \times \mathcal{N C}_{G(1,1, n-2)}\). Moreover, its least element has length 1, and its greatest element has length \(n-1\).

\section*{A Second Decomposition}

\section*{for NCP}

Henri Mühle
- bad parts: \(R_{1}^{(1)}\) and \(R_{2}^{(d-1)}\)
- define \(D=R_{n}^{(d-1)} \backslash\left(f_{1}\left(R_{1}^{(1)}\right) \uplus f_{2}\left(R_{2}^{(d-1)}\right)\right)\), and \(\mathcal{D}=\left(D, \leq_{T}\right)\)

\section*{Lemma ( (裸, 2015)}

The poset \(\mathcal{D}\) is isomorphic to \(\biguplus_{i=3}^{n-1} \mathcal{N C}_{G(1,1, i-2)} \times \mathcal{N C} C_{G(1,1, n-i)}\). Morever, its minimal elements have length 2, and its maximal elements have length \(n-2\).

\section*{The Main Result}

\author{
SCD and SSP for NCP \\ Henri Mühle
}

Theorem ( \((\underset{\text { el }}{ }\), 2015)
For \(d, n \geq 2\) the lattice \(\mathcal{N C}_{G(d, d, n)}\) admits a symmetric chain decomposition. Consequently, it is Peck.

\section*{Example: \(\mathcal{N C}_{G(3,3,3)}\)}


\section*{Example: \(\mathcal{N C}_{G}(3,3,3)\)}

\section*{SCD and SSP
for NCP \\ Henri Mühle \\ Motivation \\ cymmetrio Chain Decom positions \\ ocn af \\ \(N C_{G(d, i l n)}\) \\  \\  \\ \(G(d, d, n)\) \\ Dexompen}

A Second
Decomposition

\[
\left(\left(1^{(0)} 2^{(0)} 3^{(1)}\right)\right)\left(\left(1^{(0)} 3^{(1)} 2^{(2)}\right)\right)\left(\left(1^{(0)} 3^{(0)} 2^{(2)}\right)\right)\left[1^{(0)}\right]_{1}\left[3^{(0)}\right]_{2}\left[2^{(0)}\right]_{1}\left[3^{(0)}\right]_{2}\left(\left(1^{(0)} 2^{(0)} 3^{(2)}\right)\right)\left(\left(1^{(0)} 2^{(0)} 3^{(0)}\right)\right)\left(\left(1^{(0)} 3^{(2)} 2^{(2)}\right)\right)
\]


\author{
Henri Mühle
}

Motivation
Svmmetric
Chain Decam
pestions
Thank You.

\section*{The General Setting}
- \(G(1,1, n)\) and \(G(d, d, n)\) are well-generated irreducible complex reflection groups
- (12 \(\ldots n\) ) and \(\left[1^{(0)} 2^{(0)} \ldots(n-1)^{(0)}\right]_{1}\left[n^{(0)}\right]_{d-1}\) are Coxeter elements
- \(\mathcal{N C}_{W}(c)\) : interval \([e, c]_{T}\) in \(\left(W, \leq_{T}\right)\) for some Coxeter element \(c \in W\)

\section*{The General Setting}
- \(G(1,1, n)\) and \(G(d, d, n)\) are well-generated irreducible complex reflection groups
- (12 \(\ldots n)\) and \(\left[1^{(0)} 2^{(0)} \ldots(n-1)^{(0)}\right]_{1}\left[n^{(0)}\right]_{d-1}\) are Coxeter elements
- \(\mathcal{N C}_{W}(c)\) : interval \([e, c]_{T}\) in \(\left(W, \leq_{T}\right)\) for some Coxeter element \(c \in W\)

\section*{The General Setting}
- \(G(1,1, n)\) and \(G(d, d, n)\) are well-generated irreducible complex reflection groups
- (12 \(\ldots n\) ) and \(\left[1^{(0)} 2^{(0)} \ldots(n-1)^{(0)}\right]_{1}\left[n^{(0)}\right]_{d-1}\) are Coxeter elements
- \(\mathcal{N C}_{W}(c)\) : interval \([e, c]_{T}\) in \(\left(W, \leq_{T}\right)\) for some Coxeter element \(c \in W\)

\section*{Theorem (}

The lattice \(\mathcal{N C}_{W}\) is Peck for any well-generated complex reflection group \(W\).

\section*{The Proof Strategy}

SCD and SSP for NCP

Henri Mühle
- seen: \(\mathcal{N C}_{G(1,1, n)}\) and \(\mathcal{N C}_{G(d, d, n)}\)
- remaining: \(\mathcal{N C} C_{G(d, 1, n)}\) and exceptional groups
- we have \(\mathcal{N C}_{G(2,1, n)} \cong \mathcal{N C}_{G(d, 1, n)}\) for \(d \geq 2\) and \(n \geq 1\)

\section*{The Proof Strategy}

SCD and SSP for NCP

Henri Mühle
- seen: \(\mathcal{N C}_{G(1,1, n)}\) and \(\mathcal{N C}_{G(d, d, n)}\)
- remaining: \(\mathcal{N C}_{G(d, 1, n)}\) and exceptional groups
- we have \(\mathcal{N} C_{G(2,1, n)} \cong \mathcal{N} C_{G(d, 1, n)}\) for \(d \geq 2\) and \(n \geq 1\)

\section*{The Proof Strategy}

SCD and SSP for NCP

Henri Mühle
- seen: \(\mathcal{N C}_{G(1,1, n)}\) and \(\mathcal{N C}_{G(d, d, n)}\)
- remaining: \(\mathcal{N C}_{G(d, 1, n)}\) and exceptional groups
- we have \(\mathcal{N C}_{G(2,1, n)} \cong \mathcal{N C} \mathcal{C}_{G(d, 1, n)}\) for \(d \geq 2\) and \(n \geq 1\)

\section*{The Proof Strategy}

SCD and SSP for NCP

Henri Mühle
- seen: \(\mathcal{N C}_{G(1,1, n)}\) and \(\mathcal{N C}_{G(d, d, n)}\)
- remaining: \(\mathcal{N C}_{G(d, 1, n)}\) and exceptional groups
- we have \(\mathcal{N C}_{G(2,1, n)} \cong \mathcal{N C} \mathcal{C}_{G(d, 1, n)}\) for \(d \geq 2\) and \(n \geq 1\)

\section*{Theorem (V. Reiner, 1997)}

The lattice \(\mathcal{N C}_{G(2,1, n)}\) admits a symmetric chain decomposition for any \(n \geq 1\).

\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed

\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed


\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed


\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed


\section*{A Decomposition Argument}

Henri Mühle
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed


\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed


\section*{A Decomposition Argument}

Henri Mühle
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed


\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed \(\mathcal{P}[3]\)


\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed \(\mathcal{P}[3]\)


\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed
\[
\mathcal{P}[4]
\]

\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed

\section*{Proposition (\%, 2015)}

A graded poset \(\mathcal{P}\) of rank \(n\) is strongly Sperner if and only if \(\mathcal{P}[i]\) is Sperner for all \(i \in\{0,1, \ldots, n\}\).
- antichains in \(\mathcal{P}[i]\) are antichains in \(\mathcal{P}[s]\) for \(s<i\)

\section*{A Decomposition Argument}
- \(\mathcal{P}\).. graded poset of rank \(n\)
- \(\mathcal{P}[i]\).. subposet of \(\mathcal{P}\) with \(i\) largest ranks removed

\section*{Proposition ( \((\%, 2015)\)}

A graded poset \(\mathcal{P}\) of rank \(n\) is strongly Sperner if and only if \(\mathcal{P}[i]\) is Sperner for all \(i \in\{0,1, \ldots, n\}\).
- antichains in \(\mathcal{P}[i]\) are antichains in \(\mathcal{P}[s]\) for \(s<i\)

\section*{A Decomposition Argument}

SCD and SSP for NCP

Henri Mühle
- SAGE has a fast implementation to compute the size of the largest antichain of a poset

\section*{A Decomposition Argument}

SCD and SSP for NCP

Henri Mühle
- SAGE has a fast implementation to compute the width of a poset

\section*{A Decomposition Argument}
- SAGE has a fast implementation to compute the width of a poset

\section*{Theorem (酉, 2015)}

The lattice \(\mathcal{N C}_{W}\) is Peck for any well-generated exceptional complex reflection group \(W\).

\section*{m-Divisible Noncrossing Partition Posets}

SCD and SSP for NCP

Henri Mühle
- W .. well-generated complex reflection group; c .. Coxeter element of \(W\)
- m-divisible noncrossing partition: \(m\)-multichain of noncrossing partitions
\[
\rightsquigarrow N C_{W}^{(m)}(c)
\]
\[
(w)_{m}=\left(w_{1}, w_{2}, \ldots, w_{m}\right) \text { with } w_{1} \leq_{T} w_{2} \leq_{T} \cdots \leq_{T} w_{m} \leq_{T} c
\]

\section*{m-Divisible Noncrossing Partition Posets}
- W .. well-generated complex reflection group; c .. Coxeter element of \(W\)
- m-divisible noncrossing partition: \(m\)-multichain of noncrossing partitions \(\rightsquigarrow N C_{W}^{(m)}(c)\)
- m-delta sequence: sequence of "differences" of elements in a multichain
\[
\begin{aligned}
(w)_{m} & =\left(w_{1}, w_{2}, \ldots, w_{m}\right) \text { with } w_{1} \leq_{T} w_{2} \leq_{T} \cdots \leq_{T} w_{m} \leq_{T} c \\
\partial(w)_{m} & =\left[w_{1} ; w_{1}^{-1} w_{2}, w_{2}^{-1} w_{3}, \ldots, w_{m-1}^{-1} w_{m}, w_{m}^{-1} c\right]
\end{aligned}
\]

\section*{m-Divisible Noncrossing Partition Posets}

SCD and SSP
for NCP
Henri Mühle
- W .. well-generated complex reflection group; c .. Coxeter element of \(W\)
- m-divisible noncrossing partition: \(m\)-multichain of noncrossing partitions \(\rightsquigarrow N C_{W}^{(m)}(c)\)
- m-delta sequence: sequence of "differences" of elements in a multichain
- partial order: \((u)_{m} \leq(v)_{m}\) if and only if
\[
\partial(u)_{m} \leq_{T} \partial(v)_{m} \quad \rightsquigarrow \mathcal{N} C_{W}^{(m)}(c)
\]

\section*{Question (D. Armstrong, 2009)}

Are the posets \(\mathcal{N C}_{W}^{(m)}\) strongly Sperner for any \(W\) and any \(m \geq 1\) ?

\section*{m-Divisible Noncrossing Partition Posets}

SCD and SSP for NCP

Henri Mühle
- affirmative answer for \(m=1\)

\section*{Question (D. Armstrong, 2009)}

Are the posets \(\mathcal{N C}_{W}^{(m)}\) strongly Sperner for any \(W\) and any \(m \geq 1\) ?

\section*{m-Divisible Noncrossing Partition Posets}

SCD and SSP for NCP
- affirmative answer for \(m=1\)
- what about \(m>1\) ?
- \(\mathcal{N C}_{W}^{(m)}\) is antiisomorphic to an order ideal in \(\left(\mathcal{N C}_{W}\right)^{m}\)
- \(\left(\mathcal{N C}_{W}\right)^{m}\) is Peck
- \(\mathcal{N C}_{W}^{(m)}\) is not rank-symmetric \(\rightsquigarrow\) no symmetric chain decomposition

\section*{Question (D. Armstrong, 2009)}

Are the posets \(\mathcal{N C}_{W}^{(m)}\) strongly Sperner for any \(W\) and any \(m \geq 1\) ?

\section*{Example: \(\mathcal{N C}_{G(1,1,4)}^{(2)}\)}

\section*{SCD and SSP for NCP}

\section*{Henri Mühle}


Example: \(\mathcal{N C}_{G(1,1,4)}^{(2)}\)

\section*{SCD and SSP for NCP}

Henri Mühle
```

