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= {1, 2, . . . , n}

α-partition: a set partition of [n] whose blocks intersect
any α-region in at most one element
bump: two consecutive elements in a block
diagram: graphical representation of α-partitions
noncrossing: no bumps cross in the diagram  NCα

α = (1, 3, 1, 2, 4, 3, 1)
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It is all Connected

Theorem (C. Ceballos, W. Fang, , N. Williams;
2015–2018)
For every composition α, the sets Sα(231), NCα, Dα and Tα are
in bijection.

NCα

Sα(231) Dα

Tα

[MW2015]

[CFM2018]

[MW2015]

[CFM2018]

[CFM2018]
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Theorem ( , N. Williams; 2015)
For every integer composition α, the poset Tα is a quotient lattice
of (Sα,≤L).
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some block of P′  ≤dref

noncrossing α-partition poset: NCα
def
=
(
NCα,≤dref

)

Theorem ( ; 2018)
For every integer composition α, the poset NCα is a ranked
meet-semilattice, where the rank of an α-partition is given by the
number of bumps.
NCα is a lattice if and only if α = (n) or α = (1, 1, . . . , 1).
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an inversion of w
w 7→ Ψλα

(w) is injective on Sα(231)

Theorem ( ; 2018)
Let α be an integer composition of n. The poset CLOλα

(Tα) is
always a subposet of NCα.
We have CLOλα

(Tα) ∼= NCα if and only if α = (a, 1, 1, . . . , 1, b)
for some a, b ≥ 1.
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P ∈ Πn; k global split of wP

untangling: ∆k,n−k(P) = P1 ⊗ P2, where P1 restricts to
pipes labeled k, k + 1, . . . , n and P2 restricts to pipes
labeled 1, 2, . . . , k− 1; ∆a,b(P) = 0 otherwise

coproduct: ∆ def
= ∑

a,b∈N

∆a,b

counit: ε(P) = 1 if P = and 0 otherwise
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A Hopf Algebra on Pipe Dreams

Theorem (N. Bergeron, C. Ceballos, V. Pilaud; 2018)
The product · and coproduct ∆ endow the family of all pipe
dreams with a graded, connected Hopf algebra structure.
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Πn〈1, 12, 123 . . .〉: set of pipe dreams whose exit
permutation factors into identity permutations

-walk: a lattice walk in the positive quadrant
starting at the origin, ending on the x-axis, and using
2n steps from the set

{
(−1, 1), (1,−1), (0, 1)

}
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permutation factors into identity permutations

-walk: a lattice walk in the positive quadrant
starting at the origin, ending on the x-axis, and using
2n steps from the set
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(−1, 1), (1,−1), (0, 1)

}

Theorem (C. Ceballos, W. Fang, ; 2018)

For n ≥ 0, the dimension of kΠn〈1, 12, 123, . . .〉 equals the
number of -walks of length 2n.
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Theorem (C. Ceballos, W. Fang, ; 2018)

For n ≥ 0 and k ∈ [n], the set of pipe dreams whose exit
permutation factors into k identity permutations is in bijection
with the set of -walks of length 2n with exactly k north-steps.
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X def
= {x1, x2, . . . , xn}, Y def

= {y1, y2, . . . , yn}

diagonal action: σ · f (x1, x2, . . . , xn, y1, y2, . . . , yn) =
f (xσ(1), xσ(2), . . . , xσ(n), yσ(1), yσ(2), . . . , yσ(n))

polarized power sum: ph,k
def
=

n
∑

i=1
xh

i yk
i
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polarized power sum: ph,k
def
=
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i=1
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Theorem (H. Weyl; 1949)

The ring Q[X, Y]Sn of Sn-invariant polynomials is generated by
the polarized power sums.
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alternating component:

DRε
n

def
=
{

f ∈ DRn | σ · f = (−1)|Inv(σ)|f for all σ ∈ Sn
}
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area vector: ai is number of full boxes in row i below µ
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= Dα

dinv: dinv(µ) def
=
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def
= Dα

bounce path: path of the form Ni1Ei1Ni2Ei2 . . . NirEir

bounce parameters: bi is i-th contact of µbounce with
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α = (1, 1, . . . , 1) composition of n; µ ∈ Dn
def
= Dα

steep path: path without EE except at the end
steep: number of east-steps at the end of µsteep

µ
area(µ) = 39
dinv(µ) = 28

bounce(µ) = 23
steep(µ) = 6
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The Zeta Map

Theorem (A. Garsia, J. Haglund, M. Haiman; 2000s)
For n ≥ 0, we have

Hε
n(q, t) = ∑

µ∈Dn

qarea(µ)tbounce(µ).

= ∑
µ∈Dn

qdinv(µ)tarea.
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Theorem (A. Garsia, J. Haglund, M. Haiman; 2000s)
For n ≥ 0, we have

Hε
n(q, t) = ∑

µ∈Dn

qarea(µ)tbounce(µ)

= ∑
µ∈Dn

qdinv(µ)tarea.

the first equality is proven via a detour through
q, t-Catalan numbers
the second equality is proven via an explicit bijection;
the zeta map ζ
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The Steep-Bounce Zeta Map

Theorem (C. Ceballos, W. Fang, ; 2018)

For every n > 0 and every r ∈ [n], there exists an explicit
bijection Γ from

the set of nested pairs (µ1, µ2) ∈ D2
n, where µ2 is a steep

path ending in r east-steps, to
the set of nested pairs (µ′1, µ′2) ∈ D2

n, where µ′1 is a bounce
path that touches the diagonal r + 1 times.
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For every n > 0, the map Γ restricts to a bijection from

the set of pairs (µ, µsteep), where µ ∈ Dn, to
the set of pairs (νbounce, ν), where ν ∈ Dn.

Moreover, if (νbounce, ν) = Γ(µ, µsteep), then ν = ζ(µ).
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ν

dinv(ν) = 38
area(ν) = 23

ζ

µ

area(µ) = 38
bounce(µ) = 23
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Question
Which family of combinatorial objects realizes Fα? What are the
statistics?
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The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths

Theorem ( ; 2018)
For n > 0 and 1 ≤ t ≤ n, the common cardinality of the sets
Sα(n;t)(231), NCα(n;t) , Dα(n;t) , and Tα(n;t) is

Cat
(
α(n;t)

) def
=

t + 1
n + 1

(
2n− t
n− t

)
.
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α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths

Theorem ( ; 2018)
For n > 0 and 1 ≤ t ≤ n, the number of noncrossing
α(n;t)-partitions with exactly k bumps is(

n
k

)(
n− t

k

)
−
(

n− 1
k− 1

)(
n− t + 1

k + 1

)
.
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The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths

Theorem ( ; 2018)

For n > 0 and 1 ≤ t ≤ n, we have CLO
(
Tα(n;t)

) ∼= NCα(n;t) .
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The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths
zeta polynomial: evaluation at q + 1 counts
q-multichains

Theorem (C. Krattenthaler; 2019)
For n > 0 and 1 ≤ t ≤ n, the zeta polynomial of NCα(n;t) is

ZNCα(n;t)
(q) =

t(q− 1) + 1
n(q− 1) + 1

(
nq− t
n− t

)
.
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The Ballot Case

α(n;t)
def
= (t, 1, 1, . . . , 1) composition of n

α(n;t)-Dyck paths are essentially Ballot paths
zeta polynomial: evaluation at q + 1 counts
q-multichains

Theorem (C. Krattenthaler; 2019)
For n > 0 and 1 ≤ t ≤ n, the number of maximal chains in
NCα(n;t) is tnn−t−1.
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def
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}

n = 4

4123 4132 4213 4231 4312 4321

3124 3142 3214 3241 3412 3421

2134 2143 2314 2341 2413 2431

1234 1243 1324 1342 1423 1432
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3124 3142 3214 3241 3412 3421

2134 2143 2314 2341 2413 2431

1234 1243 1324 1342 1423 1432
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Möbius Function

P = (P,≤) finite poset

; 0̂, 1̂ least/greatest element

Back

Möbius function: the map µP : P× P→ Z given by

µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0, otherwise
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Möbius Function

P = (P,≤) finite poset

; 0̂, 1̂ least/greatest element

Back

Möbius function: the map µP : P× P→ Z given by

µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0, otherwise

Theorem (G.-C. Rota; 1964)
Let P = (P,≤) be a finite poset, and let f , g : P× P→ Z. It
holds f (y) = ∑x≤y g(x) if and only if g(y) = ∑x≤y g(x)µP (x, y).
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Möbius Function

P = (P,≤) finite bounded poset; 0̂, 1̂ least/greatest
element Back

Möbius function: the map µP : P× P→ Z given by

µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0, otherwise

Theorem (P. Hall; 1936)
Let P = (P,≤) be a finite bounded poset. The reduced Euler
characteristic of the order complex of

(
P \ {0̂, 1̂},≤) equals

µP (0̂, 1̂) up to sign.
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

join irreducible: j = x∨ y implies j ∈ {x, y}  J (L)
meet irreducible: m = x∧ y implies m ∈ {x, y}

 M(L)
length: maximal length of a chain  `(L)
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

extremal:
∣∣J (L)

∣∣ = `(L) =
∣∣M(L)

∣∣

∣∣J (L)
∣∣ = 4∣∣M(L)
∣∣ = 4

`(L) = 3
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

extremal:
∣∣J (L)

∣∣ = `(L) =
∣∣M(L)

∣∣

∣∣J (L)
∣∣ = 3∣∣M(L)
∣∣ = 3

`(L) = 3
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

extremal:
∣∣J (L)

∣∣ = `(L) =
∣∣M(L)

∣∣
C : x0 l x1 l · · ·l x`(L)
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

extremal:
∣∣J (L)

∣∣ = `(L) =
∣∣M(L)

∣∣
C : x0 l x1 l · · ·l x`(L)
sort irreducibles such that

j1 ∨ j2 ∨ · · · ∨ jk = xk = mk+1 ∧mk+2 ∧ · · · ∧m`(L)
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L = (L,≤) finite lattice Back

extremal:
∣∣J (L)

∣∣ = `(L) =
∣∣M(L)

∣∣
C : x0 l x1 l · · ·l x`(L)
sort irreducibles such that

j1 ∨ j2 ∨ · · · ∨ jk = xk = mk+1 ∧mk+2 ∧ · · · ∧m`(L)

j1

j2

j3
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L = (L,≤) finite lattice Back

extremal:
∣∣J (L)

∣∣ = `(L) =
∣∣M(L)

∣∣
C : x0 l x1 l · · ·l x`(L)
sort irreducibles such that

j1 ∨ j2 ∨ · · · ∨ jk = xk = mk+1 ∧mk+2 ∧ · · · ∧m`(L)
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m3
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

j1
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m3
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i→ k if and only if i 6= k and ji 6≤ mk
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
order: (X, Y) v (X′, Y′) if and only if X ⊆ X′

j1
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j3

m3

m2

m1
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
order: (X, Y) v (X′, Y′) if and only if X ⊆ X′

Theorem (G. Markowsky; 1992)
Every finite extremal lattice is isomorphic to the lattice of
maximal orthogonal pairs of its Galois graph.

This is a special case of a formal context.
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L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
order: (X, Y) v (X′, Y′) if and only if X ⊆ X′
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
order: (X, Y) v (X′, Y′) if and only if X ⊆ X′
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
order: (X, Y) v (X′, Y′) if and only if X ⊆ X′
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(1, 23) 1
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Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
order: (X, Y) v (X′, Y′) if and only if X ⊆ X′
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L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
order: (X, Y) v (X′, Y′) if and only if X ⊆ X′

(−, 123)

(1, 23)

(3, 1)
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Interlude: Extremal Lattices

L = (L,≤) finite lattice Back

Galois graph: directed graph on {1, 2, . . . , `(L)} with
i→ k if and only if i 6= k and ji 6≤ mk

orthogonal pair: (X, Y) such that X ∩ Y = ∅ and no
arrows from X to Y
order: (X, Y) v (X′, Y′) if and only if X ⊆ X′

(−, 123)

(1, 23)

(3, 1)

(12, 3)
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