Parabolic Cataland A Type-A Story

Henri Mühle

TU Dresden
June 28, 2019
International Seminar, TU Dresden

Moral of the Story

- Catalan numbers: $\operatorname{Cat}(n) \stackrel{\text { def }}{=} \frac{1}{n+1}\binom{2 n}{n}$
- many combinatorial objects are counted by Cat (n)

Moral of the Story

Parabolic

 Cataland- Catalan numbers: $\operatorname{Cat}(n) \stackrel{\text { def }}{=} \frac{1}{n+1}\binom{2 n}{n}$
- many combinatorial objects are counted by $\operatorname{Cat}(n)$
- we replace n by a composition α of n and generalize

Outline

Parabolic Cataland

Henri Mühle
(1) Parabolic Cataland
(2) Posets in Parabolic Cataland
(3) A Hopf Algebra on Pipe Dreams
(4) The Zeta Map

Outline

Parabolic Cataland

Henri Mühle

Parabolic
Cataland
Posets in
Parabolic
Cataland
A Hopf
Algebra on Pipe Dream

The Zeta Map
(1) Parabolic Cataland
(2) Posets in Parabolic Cataland

- A Hopf Algebra on Pipe Dreams
- The Zeta Map

Parabolic 231-Avoiding Permutations

Parabolic
Cataland

- $w \in \mathfrak{S}_{n}$

Parabolic quotients
$\begin{array}{lllllllllllll}12 & 3 & 11 & 13 & 1 & 2 & 6 & 4 & 9 & 10 & 15 & 7 & 8\end{array} 145$

Parabolic 231-Avoiding Permutations

Parabolic Cataland

Parabolic Cataland

- $w \in \mathfrak{S}_{n} ; \alpha$ composition of n
$\alpha=(1,3,1,2,4,3,1)$
$\begin{array}{lllllllllllll}12 & 3 & 11 & 13 & 1 & 2 & 6 & 4 & 9 & 10 & 15 & 7 & 8\end{array} 145$

Parabolic 231-Avoiding Permutations

Parabolic
Cataland
Henri Mühle
Parabolic Cataland

- $w \in \mathfrak{S}_{n} ; \alpha$ composition of n

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic 231-Avoiding Permutations

Parabolic
Cataland
Henri Mühle

Parabolic Cataland

- $w \in \mathfrak{S}_{\alpha} ; \alpha$ composition of n
- α-permutation: values with same color are increasing

$$
\alpha=(1,3,1,2,4,3,1)
$$

| 12 | 3 | 11 | 13 | 1 | 2 | 6 | 4 | 9 | 10 | 15 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 145

Parabolic 231-Avoiding Permutations

Parabolic
Cataland

- $w \in \mathfrak{S}_{\alpha} ; \alpha$ composition of n
- α-permutation: values with same color are increasing
- descent: (i, j) such that $i<j$ and $w(i)=w(j)+1$

$$
\alpha=(1,3,1,2,4,3,1)
$$

| 12 | 3 | 11 | 13 | 1 | 2 | 6 | 4 | 9 | 10 | 15 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 145

Parabolic 231-Avoiding Permutations

Parabolic Cataland

- $w \in \mathfrak{S}_{\alpha} ; \alpha$ composition of n
- α-permutation: values with same color are increasing
- descent: (i, j) such that $i<j$ and $w(i)=w(j)+1$

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic 231-Avoiding Permutations

- $w \in \mathfrak{S}_{\alpha} ; \alpha$ composition of n
- α-permutation: values with same color are increasing
- descent: (i, j) such that $i<j$ and $w(i)=w(j)+1$
- ($\alpha, 231$)-pattern: a triple (i, j, k) with $i<j<k$ in different α-regions such that $w(i)<w(j)$ and (i, k) is a descent
$\alpha=(1,3,1,2,4,3,1)$

12	3	11	13	1	2	6	4	9	10	15	7	8
14	5											

Parabolic 231-Avoiding Permutations

- $w \in \mathfrak{S}_{\alpha} ; \alpha$ composition of n
- α-permutation: values with same color are increasing
- descent: (i, j) such that $i<j$ and $w(i)=w(j)+1$
- ($\alpha, 231$)-pattern: a triple (i, j, k) with $i<j<k$ in different α-regions such that $w(i)<w(j)$ and (i, k) is a descent
$\alpha=(1,3,1,2,4,3,1)$

$\begin{array}{lllllllllllll}12 & 3 & 11 & 13 & 1 & 2 & 6 & 4 & 9 & 10 & 15 & 7 & 8\end{array} 14$

Parabolic 231-Avoiding Permutations

- $w \in \mathfrak{S}_{\alpha} ; \alpha$ composition of n
- α-permutation: values with same color are increasing
- descent: (i, j) such that $i<j$ and $w(i)=w(j)+1$
- ($\alpha, 231$)-pattern: a triple (i, j, k) with $i<j<k$ in different α-regions such that $w(i)<w(j)$ and (i, k) is a descent
$\alpha=(1,3,1,2,4,3,1)$

$\left.\begin{array}{llllllllllllll}12 & 3 & 11 & 13 & 1 & 2 & 6 & 4 & 9 & 10 & 15 & 7 & 8 & 14\end{array}\right)$

Parabolic 231-Avoiding Permutations

- $w \in \mathfrak{S}_{\alpha} ; \alpha$ composition of n
- α-permutation: values with same color are increasing
- descent: (i, j) such that $i<j$ and $w(i)=w(j)+1$
- ($\alpha, 231$)-pattern: a triple (i, j, k) with $i<j<k$ in different α-regions such that $w(i)<w(j)$ and (i, k) is a descent
$\alpha=(1,3,1,2,4,3,1)$

12	3	11	13	1	2	6	4	9	10	15	7	8	14

Parabolic 231-Avoiding Permutations

Cataland

- $w \in \mathfrak{S}_{\alpha} ; \alpha$ composition of n
- α-permutation: values with same color are increasing
- descent: (i, j) such that $i<j$ and $w(i)=w(j)+1$
- ($\alpha, 231$)-pattern: a triple (i, j, k) with $i<j<k$ in different α-regions such that $w(i)<w(j)$ and (i, k) is a descent
- ($\alpha, 231$)-avoiding: does not have an ($\alpha, 231$)-pattern $\rightsquigarrow \mathfrak{S}_{\alpha}(231)$
$\alpha=(1,3,1,2,4,3,1)$

| 12 | 3 | 11 | 13 | 1 | 2 | 5 | 4 | 9 | 10 | 15 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $14 \quad 6$

Parabolic Noncrossing Partitions

Parabolic Cataland

- α composition of $n ;[n] \stackrel{\text { def }}{=}\{1,2, \ldots, n\}$
- α-partition: a set partition of [n] whose blocks intersect any α-region in at most one element

Parabolic Noncrossing Partitions

Parabolic Cataland

- bump: two consecutive elements in a block

Parabolic Noncrossing Partitions

Parabolic Cataland

- α composition of $n ;[n] \stackrel{\text { def }}{=}\{1,2, \ldots, n\}$
- α-partition: a set partition of [n] whose blocks intersect any α-region in at most one element
- bump: two consecutive elements in a block
- diagram: graphical representation of α-partitions

Parabolic Noncrossing Partitions

Parabolic Cataland

- α composition of $n ;[n] \stackrel{\text { def }}{=}\{1,2, \ldots, n\}$
- α-partition: a set partition of [n] whose blocks intersect any α-region in at most one element
- bump: two consecutive elements in a block
- diagram: graphical representation of α-partitions

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Noncrossing Partitions

Parabolic Cataland

- α composition of $n ;[n] \stackrel{\text { def }}{=}\{1,2, \ldots, n\}$
- α-partition: a set partition of [n] whose blocks intersect any α-region in at most one element
- bump: two consecutive elements in a block
- diagram: graphical representation of α-partitions
- noncrossing: no bumps cross in the diagram $\rightsquigarrow N C_{\alpha}$

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Dyck Paths

Parabolic Cataland

- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ composition of n
- Dyck path: lattice path from $(0,0)$ to (n, n) with unit steps N and E that never goes below the main diagonal

Parabolic Dyck Paths

Parabolic Cataland

- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ composition of n
- Dyck path: lattice path from $(0,0)$ to (n, n) with unit steps N and E that never goes below the main diagonal
- α-bounce path: $v_{\alpha} \stackrel{\text { def }}{=} N^{\alpha_{1}} E^{\alpha_{1}} N^{\alpha_{2}} E^{\alpha_{2}} \ldots N^{\alpha_{r}} E^{\alpha_{r}}$

Parabolic Dyck Paths

Parabolic Cataland

Henri Mühle

Parabolic Cataland
Cataland
Posets in
Parabolic
$\alpha=(1,3,1,2,4,3,1)$

Parabolic Dyck Paths

Parabolic Cataland

- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ composition of n
- Dyck path: lattice path from $(0,0)$ to (n, n) with unit steps N and E that never goes below the main diagonal
- α-bounce path: $v_{\alpha} \stackrel{\text { def }}{=} N^{\alpha_{1}} E^{\alpha_{1}} N^{\alpha_{2}} E^{\alpha_{2}} \ldots N^{\alpha_{r}} E^{\alpha_{r}}$

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Dyck Paths

Parabolic Cataland

- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ composition of n
- Dyck path: lattice path from $(0,0)$ to (n, n) with unit steps N and E that never goes below the main diagonal
- α-bounce path: $v_{\alpha} \stackrel{\text { def }}{=} N^{\alpha_{1}} E^{\alpha_{1}} N^{\alpha_{2}} E^{\alpha_{2}} \ldots N^{\alpha_{r}} E^{\alpha_{r}}$

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Dyck Paths

Parabolic Cataland

Henri Mühle

Parabolic Cataland Posets in
Parabolic

- α-bounce path: $v_{\alpha} \stackrel{\text { def }}{=} N^{\alpha_{1}} E^{\alpha_{1}} N^{\alpha_{2}} E^{\alpha_{2}} \ldots N^{\alpha_{r}} E^{\alpha_{r}}$

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Dyck Paths

Parabolic Cataland
$\alpha=(1,3,1,2,4,3,1)$

- α-bounce path: $v_{\alpha} \stackrel{\text { def }}{=} N^{\alpha_{1}} E^{\alpha_{1}} N^{\alpha_{2}} E^{\alpha_{2}} \ldots N^{\alpha_{r}} E^{\alpha_{r}}$
- α-Dyck path: stays weakly above v_{α}
- Dyck path: lattice path from $(0,0)$ to (n, n) with unit steps N and E that never goes below the main diagonal

Parabolic Dyck Paths

Parabolic Cataland

- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ composition of n
- Dyck path: lattice path from $(0,0)$ to (n, n) with unit steps N and E that never goes below the main diagonal
- α-bounce path: $v_{\alpha} \stackrel{\text { def }}{=} N^{\alpha_{1}} E^{\alpha_{1}} N^{\alpha_{2}} E^{\alpha_{2}} \ldots N^{\alpha_{r}} E^{\alpha_{r}}$
- α-Dyck path: stays weakly above v_{α}
$\alpha=(1,3,1,2,4,3,1)$

Left-Aligned Colorable Trees

- α composition of n

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(4,3,2,1,3,1,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(4,3,2,1,3,1,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\begin{gathered}
\alpha=(4,3,2,1,3,1,1) \\
3<4 \rightsquigarrow \text { Failure! }
\end{gathered}
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(1,3,1,2,4,3,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(1,3,1,2,4,3,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(1,3,1,2,4,3,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(1,3,1,2,4,3,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(1,3,1,2,4,3,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(1,3,1,2,4,3,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(1,3,1,2,4,3,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(1,3,1,2,4,3,1)
$$

Left-Aligned Colorable Trees

Parabolic Cataland

- α composition of n
- α-tree: plane rooted tree with $n+1$ nodes colorable by the following algorithm

$$
\alpha=(1,3,1,2,4,3,1)
$$

It is all Connected

Parabolic
Cataland Cataland

Theorem (C. Ceballos, W. Fang, 备, N. Williams; 2015-2018)

For every composition α, the sets $\mathfrak{S}_{\alpha}(231), N C_{\alpha}, \mathcal{D}_{\alpha}$ and \mathbb{T}_{α} are in bijection.

Outline

Parabolic Cataland

Henri Mühle

Parabolic
Cataland
Posets in
Parabolic
Cataland
A Hopf
Algebra on Pipe Dream

The Zeta Map
(1)Parabolic Cataland
(2) Posets in Parabolic Cataland

- The Zeta Map

The (Left) Weak Order

Parabolic Cataland

Henri Mühle

- $w \in \mathfrak{S}_{n}$
- inversion: (i, j) such that $i<j$ and $w(i)>w(j)$

The (Left) Weak Order

Parabolic Cataland

Henri Mühle

Parabolic Cataland
$11 / 33$

- $w \in \mathfrak{S}_{n}$
- inversion: (i, j) such that $i<j$ and $w(i)>w(j)$
- (left) weak order: $w \leq_{L} w^{\prime}$ if and only if $\operatorname{Inv}(w) \subseteq \operatorname{Inv}\left(w^{\prime}\right)$

The (Left) Weak Order

Parabolic Cataland

- $w \in \mathfrak{S}_{n}$
- inversion: (i, j) such that $i<j$ and $w(i)>w(j)$
- (left) weak order: $w \leq_{L} w^{\prime}$ if and only if $\operatorname{Inv}(w) \subseteq \operatorname{Inv}\left(w^{\prime}\right)$

$$
\alpha=(1,2,1)
$$

The (Left) Weak Order

Parabolic Cataland

- $w \in \mathfrak{S}_{\alpha}$
- inversion: (i, j) such that $i<j$ and $w(i)>w(j)$
- (left) weak order: $w \leq_{L} w^{\prime}$ if and only if $\operatorname{Inv}(w) \subseteq \operatorname{Inv}\left(w^{\prime}\right)$
- parabolic Tamari lattice: $\mathcal{T}_{\alpha} \stackrel{\text { def }}{=}\left(\mathfrak{S}_{\alpha}(231), \leq_{L}\right)$

$$
\alpha=(1,2,1)
$$

The (Left) Weak Order

Parabolic Cataland

- $w \in \mathfrak{S}_{\alpha}$
- inversion: (i, j) such that $i<j$ and $w(i)>w(j)$
- (left) weak order: $w \leq_{L} w^{\prime}$ if and only if $\operatorname{Inv}(w) \subseteq \operatorname{Inv}\left(w^{\prime}\right)$
- parabolic Tamari lattice: $\mathcal{T}_{\alpha} \stackrel{\text { def }}{=}\left(\mathfrak{S}_{\alpha}(231), \leq_{L}\right)$

$$
\alpha=(1,2,1)
$$

The (Left) Weak Order

Henri Mühle
in
Parabolic Cataland

- $w \in \mathfrak{S}_{\alpha}$
- inversion: (i, j) such that $i<j$ and $w(i)>w(j)$
- (left) weak order: $w \leq_{L} w^{\prime}$ if and only if $\operatorname{Inv}(w) \subseteq \operatorname{Inv}\left(w^{\prime}\right)$
- parabolic Tamari lattice: $\mathcal{T}_{\alpha} \stackrel{\text { def }}{=}\left(\mathfrak{S}_{\alpha}(231), \leq_{L}\right)$

Theorem (§, N. Williams; 2015)

For every integer composition α, the poset \mathcal{T}_{α} is a quotient lattice of $\left(\mathfrak{S}_{\alpha}, \leq_{L}\right)$.

The Rotation Order

Parabolic Cataland

Henri Mühle

Parabolic Cataland

Posets in

 Parabolic Cataland- $\mu \in \mathcal{D}_{\alpha}$
- valley: coordinate preceded by E and followed by N

The Rotation Order

Parabolic
Cataland
Henri Mühle
$\alpha=(1,3,1,2,4,3,1)$

The Rotation Order

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

The Rotation Order

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

The Rotation Order

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

The Rotation Order

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

The Rotation Order

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

The Rotation Order

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

The Rotation Order

Parabolic Cataland

- v_{α}-Tamari lattice: $\mathcal{T}_{v_{\alpha}} \stackrel{\text { def }}{=}\left(\mathcal{D}_{\alpha}, \leq_{\alpha}\right)$
- $\mu \in \mathcal{D}_{\alpha}$
- valley: coordinate preceded by E and followed by N
- rotation at valley: exchange east step with subpath subject to a distance condition

The Rotation Order

Parabolic Cataland

$$
\alpha=(1,2,1)
$$

- $\mu \in \mathcal{D}_{\alpha}$
- valley: coordinate preceded by E and followed by N
- rotation at valley: exchange east step with subpath subject to a distance condition
- v_{α}-Tamari lattice: $\mathcal{T}_{v_{\alpha}} \stackrel{\text { def }}{=}\left(\mathcal{D}_{\alpha}, \leq_{\alpha}\right)$

The Rotation Order

Parabolic Cataland

Henri Mühle
sin
Parabolic Cataland

- $\mu \in \mathcal{D}_{\alpha}$
- valley: coordinate preceded by E and followed by N
- rotation at valley: exchange east step with subpath subject to a distance condition
- v_{α}-Tamari lattice: $\mathcal{T}_{v_{\alpha}} \stackrel{\text { def }}{=}\left(\mathcal{D}_{\alpha}, \leq_{\alpha}\right)$

Theorem (L.-F. Préville-Ratelle, X. Viennot; 2017)

For every integer composition α, the poset $\mathcal{T}_{v_{\alpha}}$ is a lattice.

The Rotation Order

Parabolic Cataland

Henri Mühle
ts in
Parabolic Cataland

- $\mu \in \mathcal{D}_{\alpha}$
- valley: coordinate preceded by E and followed by N
- rotation at valley: exchange east step with subpath subject to a distance condition
- v_{α}-Tamari lattice: $\mathcal{T}_{v_{\alpha}} \stackrel{\text { def }}{=}\left(\mathcal{D}_{\alpha}, \leq_{\alpha}\right)$

Theorem (L.-F. Préville-Ratelle, X. Viennot; 2017)

For every integer composition α, the poset $\mathcal{T}_{v_{\alpha}}$ is a lattice.

Holds for arbitrary Dyck paths v.

An Isomorphism

Parabolic Cataland

Henri Mühle

Parabolic Cataland

Posets in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&\% 2018)

For every integer composition α, the lattices \mathcal{T}_{α} and $\mathcal{T}_{v_{\alpha}}$ are isomorphic.

An Isomorphism

Parabolic
Cataland
Theorem (C. Ceballos, W. Fang, \&8; 2018)
For every integer composition α, the lattices \mathcal{T}_{α} and $\mathcal{T}_{v_{\alpha}}$ are isomorphic.

The (Dual) Refinement Order

Cataland
Posets in Parabolic Cataland

- $\mathbf{P}, \mathbf{P}^{\prime} \in \Pi_{\alpha}$
- (dual) refinement: every block of \mathbf{P} is contained in some block of \mathbf{P}^{\prime}
$\rightsquigarrow \leq_{\text {dref }}$

The (Dual) Refinement Order

Parabolic Cataland

- $\mathbf{P}, \mathbf{P}^{\prime} \in \Pi_{\alpha}$
- (dual) refinement: every block of \mathbf{P} is contained in some block of \mathbf{P}^{\prime}
$\rightsquigarrow \leq_{\text {dref }}$
- noncrossing α-partition poset: $\mathcal{N C} \mathcal{C}_{\alpha} \stackrel{\text { def }}{=}\left(N C_{\alpha}, \leq_{\text {dref }}\right)$

The (Dual) Refinement Order

Parabolic Cataland

- $\mathbf{P}, \mathbf{P}^{\prime} \in \Pi_{\alpha}$
- (dual) refinement: every block of \mathbf{P} is contained in some block of \mathbf{P}^{\prime}

$$
\rightsquigarrow \leq_{\mathrm{dref}}
$$

- noncrossing α-partition poset: $\mathcal{N C} \mathcal{C}_{\alpha} \stackrel{\text { def }}{=}\left(N C_{\alpha}, \leq_{\text {dref }}\right)$

The (Dual) Refinement Order

Parabolic Cataland

Henri Mühle
in
Parabolic Cataland

- $\mathbf{P}, \mathbf{P}^{\prime} \in \Pi_{\alpha}$
- (dual) refinement: every block of \mathbf{P} is contained in some block of \mathbf{P}^{\prime}
- noncrossing α-partition poset: $\mathcal{N C} \mathcal{C}_{\alpha} \xlongequal{\text { def }}\left(N C_{\alpha}, \leq_{\text {dref }}\right)$

Theorem (\%; 2018)

For every integer composition α, the poset $\mathcal{N C}_{\alpha}$ is a ranked meet-semilattice, where the rank of an a-partition is given by the number of bumps.

The (Dual) Refinement Order

Parabolic Cataland

- $\mathbf{P}, \mathbf{P}^{\prime} \in \Pi_{\alpha}$
- (dual) refinement: every block of \mathbf{P} is contained in some block of \mathbf{P}^{\prime}
- noncrossing α-partition poset: $\mathcal{N C} \mathcal{C}_{\alpha} \xlongequal{\text { def }}\left(N C_{\alpha}, \leq_{\text {dref }}\right)$

Theorem (\%; 2018)

For every integer composition α, the poset $\mathcal{N C}_{\alpha}$ is a ranked meet-semilattice, where the rank of an a-partition is given by the number of bumps.
$\mathcal{N C}_{\alpha}$ is a lattice if and only if $\alpha=(n)$ or $\alpha=(1,1, \ldots, 1)$.

Interlude: The Core Label Order of a Lattice

Parabolic Cataland

Henri Mühle

Parabolic
Cataland
Posets in
Parabolic Cataland

$$
\text { - } \mathcal{L}=(L, \leq) \text { finite lattice; } \lambda \text { edge-labeling }
$$

Interlude: The Core Label Order of a Lattice

Parabolic Cataland

Henri Mühle

Posets in Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling

Interlude: The Core Label Order of a Lattice

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- nucleus: $x_{\downarrow} \stackrel{\text { def }}{=} \bigwedge_{y \in L: y<x} y$

Interlude: The Core Label Order of a Lattice

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- nucleus: $x_{\downarrow} \stackrel{\text { def }}{=} \bigwedge_{y \in L: y<x} y$

Interlude: The Core Label Order of a Lattice

Parabolic
Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- nucleus: $x_{\downarrow} \stackrel{\text { def }}{=} \bigwedge_{y \in L: y<x} y$

Interlude: The Core Label Order of a Lattice

Parabolic
Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- nucleus: $x_{\downarrow} \stackrel{\text { def }}{=} \bigwedge_{y \in L: y<x} y$

Interlude: The Core Label Order of a Lattice

Parabolic
Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- nucleus: $x_{\downarrow} \stackrel{\text { def }}{=} \bigwedge_{y \in L: y<x} y$
- core: interval $\left[x_{\downarrow}, x\right]$

Interlude: The Core Label Order of a Lattice

Parabolic
Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- nucleus: $x_{\downarrow} \stackrel{\text { def }}{=} \bigwedge_{y \in L: y<x} y$
- core: interval $\left[x_{\downarrow}, x\right]$
- core labels: $\Psi_{\lambda}(x) \stackrel{\text { def }}{=}\left\{\lambda(u, v) \mid x_{\downarrow} \leq u \lessdot v \leq x\right\}$

Interlude: The Core Label Order of a Lattice

Parabolic
Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- nucleus: $x_{\downarrow} \stackrel{\text { def }}{=} \bigwedge_{y \in L: y<x} y$
- core: interval $\left[x_{\downarrow}, x\right]$
- core labels: $\Psi_{\lambda}(x) \stackrel{\text { def }}{=}\left\{\lambda(u, v) \mid x_{\downarrow} \leq u \lessdot v \leq x\right\}$

$$
\Psi_{\lambda}(x)=\{3,4,5\}
$$

Interlude: The Core Label Order of a Lattice

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- core label order: $x \sqsubseteq y$ if and only if $\Psi_{\lambda}(x) \subseteq \Psi_{\lambda}(y)$

Interlude: The Core Label Order of a Lattice

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- core label order: $x \sqsubseteq y$ if and only if $\Psi_{\lambda}(x) \subseteq \Psi_{\lambda}(y)$
- $\mathrm{CLO}_{\lambda}(\mathcal{L}) \stackrel{\text { def }}{=}(L, \sqsubseteq)$

Interlude: The Core Label Order of a Lattice

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- core label order: $x \sqsubseteq y$ if and only if $\Psi_{\lambda}(x) \subseteq \Psi_{\lambda}(y)$
- $\mathrm{CLO}_{\lambda}(\mathcal{L}) \stackrel{\text { def }}{=}(L, \sqsubseteq)$
(requires that $x \mapsto \Psi_{\lambda}(x)$ is injective)

Interlude: The Core Label Order of a Lattice

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice; λ edge-labeling; $x \in L$
- core label order: $x \sqsubseteq y$ if and only if $\Psi_{\lambda}(x) \subseteq \Psi_{\lambda}(y)$
- $\mathrm{CLO}_{\lambda}(\mathcal{L}) \stackrel{\text { def }}{=}(L, \sqsubseteq)$
(requires that $x \mapsto \Psi_{\lambda}(x)$ is injective)

The Core Label Order of \mathcal{T}_{α}

Parabolic Cataland

- λ_{α} : label $w \lessdot w^{\prime}$ by the unique descent of w^{\prime} that is not an inversion of w
- $w \mapsto \Psi_{\lambda_{\alpha}}(w)$ is injective on $\mathfrak{S}_{\alpha}(231)$

The Core Label Order of \mathcal{T}_{α}

Parabolic Cataland

- λ_{α} : label $w \lessdot w^{\prime}$ by the unique descent of w^{\prime} that is not an inversion of w
- $w \mapsto \Psi_{\lambda_{\alpha}}(w)$ is injective on $\mathfrak{S}_{\alpha}(231)$

The Core Label Order of \mathcal{T}_{α}

Parabolic Cataland

- λ_{α} : label $w \lessdot w^{\prime}$ by the unique descent of w^{\prime} that is not an inversion of w
- $w \mapsto \Psi_{\lambda_{\alpha}}(w)$ is injective on $\mathfrak{S}_{\alpha}(231)$

21341243

(i, 2) $(3,4)$
1234

The Core Label Order of \mathcal{T}_{α}

Parabolic Cataland

- λ_{α} : label $w \lessdot w^{\prime}$ by the unique descent of w^{\prime} that is not an inversion of w
- $w \mapsto \Psi_{\lambda_{\alpha}}(w)$ is injective on $\mathfrak{S}_{\alpha}(231)$

The Core Label Order of \mathcal{T}_{α}

Parabolic Cataland

- λ_{α} : label $w \lessdot w^{\prime}$ by the unique descent of w^{\prime} that is not an inversion of w
- $w \mapsto \Psi_{\lambda_{\alpha}}(w)$ is injective on $\mathfrak{S}_{\alpha}(231)$

$$
\alpha=(1,2,1)
$$

The Core Label Order of \mathcal{T}_{α}

Parabolic Cataland

- λ_{α} : label $w \lessdot w^{\prime}$ by the unique descent of w^{\prime} that is not an inversion of w
- $w \mapsto \Psi_{\lambda_{\alpha}}(w)$ is injective on $\mathfrak{S}_{\alpha}(231)$

Theorem (\%; 2018)

Let α be an integer composition of n. The poset $\mathrm{CLO}_{\lambda_{\alpha}}\left(\mathcal{T}_{\alpha}\right)$ is always a subposet of $\mathcal{N C}{ }_{\alpha}$.

The Core Label Order of \mathcal{T}_{α}

Parabolic Cataland

Theorem ((\% \% 2018)

Let α be an integer composition of n. The poset $\mathrm{CLO}_{\lambda_{\alpha}}\left(\mathcal{T}_{\alpha}\right)$ is always a subposet of $\mathcal{N C} \boldsymbol{C}_{\alpha}$.
We have $\mathrm{CLO}_{\lambda_{\alpha}}\left(\mathcal{T}_{\alpha}\right) \cong \mathcal{N C}_{\alpha}$ if and only if $\alpha=(a, 1,1, \ldots, 1, b)$
for some $a, b \geq 1$.

- λ_{α} : label $w \lessdot w^{\prime}$ by the unique descent of w^{\prime} that is not an inversion of w
- $w \mapsto \Psi_{\lambda_{\alpha}}(w)$ is injective on $\mathfrak{S}_{\alpha}(231)$

The Core Label Order of \mathcal{T}_{α}

Parabolic Cataland

- λ_{α} : label $w \lessdot w^{\prime}$ by the unique descent of w^{\prime} that is not an inversion of w
- $w \mapsto \Psi_{\lambda_{\alpha}}(w)$ is injective on $\mathfrak{S}_{\alpha}(231)$

$$
\alpha=(1,2,1)
$$

The Core Label Order of \mathcal{T}_{α}

Parabolic Cataland

- λ_{α} : label $w \lessdot w^{\prime}$ by the unique descent of w^{\prime} that is not an inversion of w
- $w \mapsto \Psi_{\lambda_{\alpha}}(w)$ is injective on $\mathfrak{S}_{\alpha}(231)$

$$
\alpha=(1,2,1)
$$

Outline

Parabolic Cataland

Henri Mühle

Parabolic
Cataland
Posets in
Parabolic
Cataland
A Hopf
Algebra on Pipe Dreams

The Zeta Map
(1) Parabolic Cataland
(2) Posets in Parabolic Cataland

3 A Hopf Algebra on Pipe Dreams

- The Zeta Map

Decomposition of Permutations

Parabolic Cataland

Henri Mühle

Parabolic Cataland

Posets in
Parabolic Cataland

A Hopf
Algebra on Pipe Dreams The Zeta Mat
$18 / 33$

- $w \in \mathfrak{S}_{n}$
- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$

Decomposition of Permutations

Parabolic Cataland

Henri Mühle

- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$

$$
w=86457312
$$

Decomposition of Permutations

Parabolic Cataland

Henri Mühle

- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$

$$
w=8 \mid 6457312
$$

Decomposition of Permutations

Parabolic Cataland

Henri Mühle

- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$

$$
w=86457 \mid 312
$$

Decomposition of Permutations

Parabolic Cataland

Henri Mühle

- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$

$$
w=864573 \mid 12
$$

Decomposition of Permutations

Parabolic Cataland

Henri Mühle

- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$

$$
w=86457312 \mid
$$

Decomposition of Permutations

Parabolic Cataland

- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$
- atomic: permutation whose only global split is n

$$
w=86457312
$$

Decomposition of Permutations

Parabolic Cataland

- $w \in \mathfrak{S}_{n}$
- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$
- atomic: permutation whose only global split is n
- unique decomposition of w into atomic permutations

$$
w=86457312
$$

Decomposition of Permutations

Parabolic Cataland

- $w \in \mathfrak{S}_{n}$
- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$
- atomic: permutation whose only global split is n
- unique decomposition of w into atomic permutations

$$
w=8|6457| 3|12|
$$

Decomposition of Permutations

Parabolic Cataland

- $w \in \mathfrak{S}_{n}$
- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$
- atomic: permutation whose only global split is n
- unique decomposition of w into atomic permutations

$$
w=86457312
$$

Decomposition of Permutations

Parabolic Cataland

- $w \in \mathfrak{S}_{n}$
- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$
- atomic: permutation whose only global split is n
- unique decomposition of w into atomic permutations

$$
w=8 \bullet 6457 \bullet 3 \bullet 12
$$

Decomposition of Permutations

Parabolic Cataland

- $w \in \mathfrak{S}_{n}$
- global split: $k \in[n]$ such that $w([k])=[n] \backslash[n-k]$
- atomic: permutation whose only global split is n
- unique decomposition of w into atomic permutations

$$
w=1 \bullet 3124 \bullet 1 \bullet 12
$$

Pipe Dreams

Parabolic Cataland

- pipe dream: filling of a triangular shape with elbows ${ }_{r}$ and crosses +
- reduced: every pair of pipes crosses at most once
- technical requirement: elbow in top-left cell $\rightsquigarrow \Pi_{n}$

Pipe Dreams

- pipe dream: filling of a triangular shape with elbows r and crosses +
- reduced: every pair of pipes crosses at most once
- technical requirement: elbow in top-left cell $\rightsquigarrow \Pi_{n}$

Pipe Dreams

- pipe dream: filling of a triangular shape with elbows ${ }^{\prime}$ and crosses +
- reduced: every pair of pipes crosses at most once
- technical requirement: elbow in top-left cell $\rightsquigarrow \Pi_{n}$
- exit permutation: order of the pipes exiting on the top

Pipe Dreams

- pipe dream: filling of a triangular shape with elbows r and crosses +
- reduced: every pair of pipes crosses at most once
- technical requirement: elbow in top-left cell $\rightsquigarrow \Pi_{n}$
- exit permutation: order of the pipes exiting on the top

Pipe Dreams

- pipe dream: filling of a triangular shape with elbows r and crosses +
- reduced: every pair of pipes crosses at most once
- technical requirement: elbow in top-left cell $\rightsquigarrow \Pi_{n}$
- exit permutation: order of the pipes exiting on the top

Pipe Dreams

- pipe dream: filling of a triangular shape with elbows r and crosses +
- reduced: every pair of pipes crosses at most once
- technical requirement: elbow in top-left cell $\rightsquigarrow \Pi_{n}$
- exit permutation: order of the pipes exiting on the top

Pipe Dreams

- pipe dream: filling of a triangular shape with elbows r and crosses +
- reduced: every pair of pipes crosses at most once
- technical requirement: elbow in top-left cell $\rightsquigarrow \Pi_{n}$
- exit permutation: order of the pipes exiting on the top
- consider the graded vector space $\mathbf{k} \Pi \stackrel{\text { def }}{=} \bigoplus_{n \geq 0} \mathbf{k} \Pi_{n}$

A Product on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- P / Q-shuffle: word with m letters p and n letters q such that the number of p^{\prime} s weakly before any $p q$ is a global split of w_{P} and vice versa

A Product on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- P / Q-shuffle: word with m letters p and n letters q such that the number of p^{\prime} s weakly before any $p q$ is a global split of w_{P} and vice versa

$$
\begin{aligned}
w_{P} & =53421=312 \bullet 1 \bullet 1 \\
w_{Q} & =645312=1 \bullet 231 \bullet 12
\end{aligned}
$$

A Product on Pipe Dreams

Parabolic
Cataland
Henri Mühle

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- P/Q-shuffle: word with m letters p and n letters q such that the number of p^{\prime} s weakly before any $p q$ is a global split of w_{P} and vice versa

$$
\begin{gathered}
w_{P}=53421=312 \cdot 1 \cdot 1 \\
w_{Q}=645312=1 \cdot 231 \bullet 12 \\
s=p p p p q p q 9999
\end{gathered}
$$

A Product on Pipe Dreams

Parabolic
Cataland
Henri Mühle

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- P/Q-shuffle: word with m letters p and n letters q such that the number of p^{\prime} s weakly before any $p q$ is a global split of w_{P} and vice versa

$$
\begin{gathered}
w_{P}=53421=312 \bullet 1 \bullet 1 \\
w_{Q}=645312=1 \cdot 231 \bullet 12 \\
s=\text { qpppqqqpqqp }
\end{gathered}
$$

A Product on Pipe Dreams

Parabolic
Cataland
Henri Mühle

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- P/Q-shuffle: word with m letters p and n letters q such that the number of p^{\prime} s weakly before any $p q$ is a global split of w_{P} and vice versa

$$
\begin{aligned}
& w_{p}=53421=312 \bullet 1 \bullet 1 \\
& w_{Q}= 645312=1 \bullet 231 \bullet 12 \\
& s=\text { qqppqqq9pqpp } \quad \text { Nope! }
\end{aligned}
$$

A Product on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- tangling: $\star_{s}(P, Q)=R$ where the pipes of P and Q are inserted into R according to the P / Q-shuffle s; $\star_{t}(P, Q)=0$ otherwise
- product: $P \cdot Q \stackrel{\text { def }}{=} \sum_{s} P \star_{s} Q$
- unit: $\iota(1)=J_{\text {r }}$

A Product on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- tangling: $\star_{s}(P, Q)=R$ where the pipes of P and Q are inserted into R according to the P / Q-shuffle s; $\star_{t}(P, Q)=0$ otherwise
- product: $P \cdot Q \stackrel{\text { def }}{=} \sum_{S} P \star_{s} Q$
- unit: $\iota(1)=J_{\text {r }}$

*ppqppqq

A Product on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- tangling: $\star_{s}(P, Q)=R$ where the pipes of P and Q are inserted into R according to the P / Q-shuffle s; $\star_{t}(P, Q)=0$ otherwise
- product: $P \cdot Q \stackrel{\text { def }}{=} \sum_{S} P \star_{s} Q$
- unit: $\iota(1)=J_{\text {r }}$

A Product on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- tangling: $\star_{s}(P, Q)=R$ where the pipes of P and Q are inserted into R according to the P / Q-shuffle s; $\star_{t}(P, Q)=0$ otherwise
- product: $P \cdot Q \stackrel{\text { def }}{=} \sum_{s} P \star_{s} Q$
- unit: $\iota(1)=J_{\text {r }}$

A Product on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- tangling: $\star_{s}(P, Q)=R$ where the pipes of P and Q are inserted into R according to the P / Q-shuffle s; $\star_{t}(P, Q)=0$ otherwise
- product: $P \cdot Q \stackrel{\text { def }}{=} \sum_{S} P \star_{s} Q$
- unit: $\iota(1)=J_{\text {r }}$

A Product on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- tangling: $\star_{s}(P, Q)=R$ where the pipes of P and Q are inserted into R according to the P / Q-shuffle s;
$\star_{t}(P, Q)=0$ otherwise
- product: $P \cdot Q \stackrel{\text { def }}{=} \sum_{S} P \star_{s} Q$
- unit: $\iota(1)=J_{r}$

A Product on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{m}, Q \in \Pi_{n}$
- tangling: $\star_{s}(P, Q)=R$ where the pipes of P and Q are inserted into R according to the P / Q-shuffle s; $\star_{t}(P, Q)=0$ otherwise
- product: $P \cdot Q \stackrel{\text { def }}{=} \sum_{S} P \star_{s} Q$
- unit: $\iota(1)=J_{\text {r }}$

A Coproduct on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{n} ; k$ global split of w_{P}
- untangling: $\Delta_{k, n-k}(P)=P_{1} \otimes P_{2}$, where P_{1} restricts to pipes labeled $k, k+1, \ldots, n$ and P_{2} restricts to pipes labeled $1,2, \ldots, k-1 ; \Delta_{a, b}(P)=0$ otherwise
- coproduct: $\Delta \stackrel{\text { def }}{=} \sum_{a, b \in \mathbb{N}} \Delta_{a, b}$
- counit: $\epsilon(P)=1$ if $P=J_{r}$ and 0 otherwise

A Coproduct on Pipe Dreams

- $P \in \Pi_{n} ; k$ global split of w_{P}
- untangling: $\Delta_{k, n-k}(P)=P_{1} \otimes P_{2}$, where P_{1} restricts to pipes labeled $k, k+1, \ldots, n$ and P_{2} restricts to pipes labeled $1,2, \ldots, k-1 ; \Delta_{a, b}(P)=0$ otherwise
- coproduct: $\Delta \stackrel{\text { def }}{=} \sum_{a, b \in \mathbb{N}} \Delta_{a, b}$
- counit: $\epsilon(P)=1$ if $P=J_{r}$ and 0 otherwise

A Coproduct on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{n} ; k$ global split of w_{P}
- untangling: $\Delta_{k, n-k}(P)=P_{1} \otimes P_{2}$, where P_{1} restricts to pipes labeled $k, k+1, \ldots, n$ and P_{2} restricts to pipes labeled $1,2, \ldots, k-1 ; \Delta_{a, b}(P)=0$ otherwise
- coproduct: $\Delta \stackrel{\text { def }}{=} \sum_{a, b \in \mathbb{N}} \Delta_{a, b}$
- counit: $\epsilon(P)=1$ if $P=J_{r}$ and 0 otherwise

A Coproduct on Pipe Dreams

Parabolic Cataland

- $P \in \Pi_{n} ; k$ global split of w_{P}
- untangling: $\Delta_{k, n-k}(P)=P_{1} \otimes P_{2}$, where P_{1} restricts to pipes labeled $k, k+1, \ldots, n$ and P_{2} restricts to pipes labeled $1,2, \ldots, k-1 ; \Delta_{a, b}(P)=0$ otherwise
- coproduct: $\Delta \stackrel{\text { def }}{=} \sum_{a, b \in \mathbb{N}} \Delta_{a, b}$
- counit: $\epsilon(P)=1$ if $P=J_{r}$ and 0 otherwise

A Coproduct on Pipe Dreams

- $P \in \Pi_{n} ; k$ global split of w_{P}
- untangling: $\Delta_{k, n-k}(P)=P_{1} \otimes P_{2}$, where P_{1} restricts to pipes labeled $k, k+1, \ldots, n$ and P_{2} restricts to pipes labeled $1,2, \ldots, k-1 ; \Delta_{a, b}(P)=0$ otherwise
- coproduct: $\Delta \stackrel{\text { def }}{=} \sum_{a, b \in \mathbb{N}} \Delta_{a, b}$
- counit: $\epsilon(P)=1$ if $P=J_{r}$ and 0 otherwise

A Hopf Algebra on Pipe Dreams

Theorem (N. Bergeron, C. Ceballos, V. Pilaud; 2018)

The product - and coproduct Δ endow the family of all pipe dreams with a graded, connected Hopf algebra structure.

The Graded Dimension of $\mathbf{k} \Pi$

- $\Pi_{n}\langle 1,12,123 \ldots\rangle$: set of pipe dreams whose exit permutation factors into identity permutations
- -walk: a lattice walk in the positive quadrant starting at the origin, ending on the x-axis, and using $2 n$ steps from the set $\{(-1,1),(1,-1),(0,1)\}$

The Graded Dimension of $\mathbf{k} \Pi$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&̌ 2018)

For $n \geq 0$, the dimension of $\mathbf{k} \Pi_{n}\langle 1,12,123, \ldots\rangle$ equals the number of $\$_{-}$-walks of length $2 n$.

- $\Pi_{n}\langle 1,12,123 \ldots\rangle$: set of pipe dreams whose exit permutation factors into identity permutations
- \uparrow-walk: a lattice walk in the positive quadrant starting at the origin, ending on the x-axis, and using $2 n$ steps from the set $\{(-1,1),(1,-1),(0,1)\}$

品

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic
Cataland

Theorem (C. Ceballos, W. Fang, §\% 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

$$
w=1 \bullet 123 \bullet 1 \bullet 12 \bullet 1234 \bullet 123 \bullet 1
$$

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, §\% 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{-}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{1}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of ${ }^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of ${ }^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \$; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{〔}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, © ; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, © ; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, © ; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, © ; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, © ; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, © ; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, © ; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 会; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 会; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 苗; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 苗; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 会; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 会; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 会; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 苗; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 苗; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, 苗; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of \uparrow-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, *; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n} n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&゙; 2018)
For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\Upsilon}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \&; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$_{\text {-walks of length } 2 n \text { with exactly } k \text { north-steps. }}^{2}$

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

The Scenic Route Through Cataland

Theorem (C. Ceballos, W. Fang, ॠ\% 2018)

For $n \geq 0$ and $k \in[n]$, the set of pipe dreams whose exit permutation factors into k identity permutations is in bijection with the set of $\$^{\uparrow}$-walks of length $2 n$ with exactly k north-steps.

Outline

Parabolic Cataland

Henri Mühle

Parabolic
Cataland
Posets in
Parabolic
Cataland
A Hopf
Algebra on Pipe Dream

The Zeta Map
(1) Parabolic Cataland
(2) Posets in Parabolic Cataland

3 A Hopf Algebra on Pipe Dreams
(4) The Zeta Map

Diagonal Coinvariants

Parabolic Cataland

Henri Mühle

- $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y \stackrel{\text { def }}{=}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$
- diagonal action: $\sigma \cdot f\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)=$

$$
f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}, y_{\sigma(1)}, y_{\sigma(2)}, \ldots, y_{\sigma(n)}\right)
$$

- polarized power sum: $p_{h, k} \stackrel{\text { def }}{=} \sum_{i=1}^{n} x_{i}^{h} y_{i}^{k}$

Diagonal Coinvariants

Parabolic Cataland

- $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y \stackrel{\text { def }}{=}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$
- diagonal action: $\sigma \cdot f\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)=$

$$
f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}, y_{\sigma(1)}, y_{\sigma(2)}, \ldots, y_{\sigma(n)}\right)
$$

- polarized power sum: $p_{h, k} \stackrel{\text { def }}{=} \sum_{i=1}^{n} x_{i}^{h} y_{i}^{k}$

Theorem (H. Weyl; 1949)

The ring $\mathbb{Q}[X, Y]^{\mathfrak{S}_{n}}$ of \mathfrak{S}_{n}-invariant polynomials is generated by the polarized power sums.

Diagonal Coinvariants

Parabolic Cataland

Henri Mühle

- $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y \stackrel{\text { def }}{=}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$
- (bigraded) diagonal coinvariant ring: $D R_{n} \stackrel{\text { def }}{=} \mathbb{Q}[X, Y] /\left\langle p_{h, k} \mid h+k>0\right\rangle$

Diagonal Coinvariants

Parabolic Cataland

Henri Mühle

- $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y \stackrel{\text { def }}{=}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$
- (bigraded) diagonal coinvariant ring: $D R_{n} \stackrel{\text { def }}{=} \mathbb{Q}[X, Y] /\left\langle p_{h, k} \mid h+k>0\right\rangle=\underset{i, j \geq 0}{\bigoplus} D R_{n}^{(i, j)}$

Diagonal Coinvariants

Parabolic Cataland

- $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y \xlongequal{=}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$
- (bigraded) diagonal coinvariant ring: $D R_{n} \stackrel{\text { def }}{=} \mathbb{Q}[X, Y] /\left\langle p_{h, k} \mid h+k>0\right\rangle=\underset{i, j \geq 0}{\bigoplus} D R_{n}^{(i, j)}$
- alternating component:

$$
D R_{n}^{\epsilon} \stackrel{\text { def }}{=}\left\{f \in D R_{n} \mid \sigma \cdot f=(-1)^{|\operatorname{Inv}(\sigma)|} f \text { for all } \sigma \in \mathfrak{S}_{n}\right\}
$$

Diagonal Coinvariants

Parabolic Cataland

- $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y \xlongequal{=}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$
- (bigraded) diagonal coinvariant ring: $D R_{n} \stackrel{\text { def }}{=} \mathbb{Q}[X, Y] /\left\langle p_{h, k} \mid h+k>0\right\rangle=\bigoplus_{i, j \geq 0} D R_{n}^{(i, j)}$
- alternating component:

$$
D R_{n}^{\epsilon} \stackrel{\text { def }}{=}\left\{f \in D R_{n} \mid \sigma \cdot f=(-1)^{|\operatorname{Inv}(\sigma)|} f \text { for all } \sigma \in \mathfrak{S}_{n}\right\}
$$

- (bigraded) Hilbert series:
$\mathcal{H}_{n}(q, t) \stackrel{\text { def }}{=} \sum_{i, j \geq 0} t^{i} q^{j} \operatorname{dim} D R_{n}{ }^{(i, j)}$

Diagonal Coinvariants

Parabolic Cataland

- $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y \xlongequal{=}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$
- (bigraded) diagonal coinvariant ring: $D R_{n} \stackrel{\text { def }}{=} \mathbb{Q}[X, Y] /\left\langle p_{h, k} \mid h+k>0\right\rangle=\bigoplus_{i, j \geq 0} D R_{n}^{(i, j)}$
- alternating component:

$$
D R_{n}^{\epsilon} \stackrel{\text { def }}{=}\left\{f \in D R_{n} \mid \sigma \cdot f=(-1)^{|\operatorname{Inv}(\sigma)|} f \text { for all } \sigma \in \mathfrak{S}_{n}\right\}
$$

- (bigraded) Hilbert series:
$\mathcal{H}_{n}^{\epsilon}(q, t) \stackrel{\text { def }}{=} \sum_{i, j \geq 0} t^{i} q^{j} \operatorname{dim} D R_{n}^{\epsilon(i, j)}$

Statistics on Dyck Paths

Parabolic
Cataland
Henri Mühle

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$

Statistics on Dyck Paths

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- area vector: a_{i} is number of full boxes in row i below μ

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- area vector: a_{i} is number of full boxes in row i below μ

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- area vector: a_{i} is number of full boxes in row i below μ
- area: $\operatorname{area}(\mu)=\sum a_{i}$

$$
\operatorname{area}(\mu)=39
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- dinv: $\operatorname{dinv}(\mu) \stackrel{\text { def }}{=}\left|\left\{(i, j) \mid i<j, a_{i} \in\left\{a_{j}, a_{j}+1\right\}\right\}\right|$

$$
\operatorname{area}(\mu)=39
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- dinv: $\operatorname{dinv}(\mu) \stackrel{\text { def }}{=}\left|\left\{(i, j) \mid i<j, a_{i} \in\left\{a_{j}, a_{j}+1\right\}\right\}\right|$

$$
\begin{aligned}
& a_{15}=0 \\
& a_{14}=3 \\
& a_{13}=2 \\
& a_{12}=3 \\
& a_{11}=4 \\
& a_{10}=5 \\
& a_{9}=4 \\
& a_{8}=4 \\
& a_{7}=3 \\
& a_{6}=2 \\
& a_{5}=3 \\
& a_{4}=2 \\
& a_{3}=2 \\
& a_{2}=1 \\
& a_{1}=0 \rightsquigarrow 1
\end{aligned}
$$

$$
\operatorname{area}(\mu)=39
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- dinv: $\operatorname{dinv}(\mu) \stackrel{\text { def }}{=}\left|\left\{(i, j) \mid i<j, a_{i} \in\left\{a_{j}, a_{j}+1\right\}\right\}\right|$

$$
\begin{aligned}
& a_{15}=0 \\
& a_{14}=3 \\
& a_{13}=2 \\
& a_{12}=3 \\
& a_{11}=4 \\
& a_{10}=5 \\
& a_{9}=4 \\
& a_{8}=4 \\
& a_{7}=3 \\
& a_{6}=2 \\
& a_{5}=3 \\
& a_{4}=2 \\
& a_{3}=2 \\
& a_{2}=1 \\
& a_{1}=0 \rightsquigarrow 1
\end{aligned}
$$

$$
\operatorname{area}(\mu)=39
$$

Statistics on Dyck Paths

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- dinv: $\operatorname{dinv}(\mu) \stackrel{\text { def }}{=}\left|\left\{(i, j) \mid i<j, a_{i} \in\left\{a_{j}, a_{j}+1\right\}\right\}\right|$

$\operatorname{area}(\mu)=39$

Statistics on Dyck Paths

Parabolic

 Cataland- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- dinv: $\operatorname{dinv}(\mu) \stackrel{\text { def }}{=}\left|\left\{(i, j) \mid i<j, a_{i} \in\left\{a_{j}, a_{j}+1\right\}\right\}\right|$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- bounce path: path of the form $N^{i_{1}} E^{i_{1}} N^{i_{2}} E^{i_{2}} \ldots N^{i_{r}} E^{i_{r}}$
- bounce parameters: b_{i} is i-th contact of $\mu_{\text {bounce }}$ with diagonal
- bounce: bounce $(\mu) \stackrel{\text { def }}{=} \sum\left(n-b_{i}\right)$

$\mu_{\text {bounce }}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23
\end{aligned}
$$

Statistics on Dyck Paths

Parabolic Cataland

- $\alpha=(1,1, \ldots, 1)$ composition of $n ; \mu \in \mathcal{D}_{n} \stackrel{\text { def }}{=} \mathcal{D}_{\alpha}$
- steep path: path without EE except at the end - steep: number of east-steps at the end of $\mu_{\text {steep }}$

$$
\begin{aligned}
\operatorname{area}(\mu) & =39 \\
\operatorname{dinv}(\mu) & =28 \\
\text { bounce }(\mu) & =23 \\
\text { steep }(\mu) & =6
\end{aligned}
$$

The Zeta Map

Parabolic Cataland

Henri Mühle

Parabolic
Cataland

Posets in

Theorem (A. Garsia, J. Haglund, M. Haiman; 2000s)
For $n \geq 0$, we have

$$
\mathcal{H}_{n}^{\epsilon}(q, t)=\sum_{\mu \in \mathcal{D}_{n}} q^{\operatorname{area}(\mu)} t^{\text {bounce }(\mu)}
$$

The Zeta Map

Parabolic Cataland

Theorem (A. Garsia, J. Haglund, M. Haiman; 2000s)
For $n \geq 0$, we have

$$
\begin{aligned}
\mathcal{H}_{n}^{\epsilon}(q, t) & =\sum_{\mu \in \mathcal{D}_{n}} q^{\operatorname{area}(\mu)} t^{\text {bounce }(\mu)} \\
& =\sum_{\mu \in \mathcal{D}_{n}} q^{\operatorname{dinv}(\mu)} t^{\operatorname{area}}
\end{aligned}
$$

The Zeta Map

Parabolic Cataland

Theorem (A. Garsia, J. Haglund, M. Haiman; 2000s)
For $n \geq 0$, we have

$$
\begin{aligned}
\mathcal{H}_{n}^{\epsilon}(q, t) & =\sum_{\mu \in \mathcal{D}_{n}} q^{\operatorname{area}(\mu)} t^{\text {bounce }(\mu)} \\
& =\sum_{\mu \in \mathcal{D}_{n}} q^{\operatorname{dinv}(\mu)} t^{\text {area }}
\end{aligned}
$$

- the first equality is proven via a detour through q, t-Catalan numbers
- the second equality is proven via an explicit bijection; the zeta map ζ

The Steep-Bounce Zeta Map

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, **; 2018)

For every $n>0$ and every $r \in[n]$, there exists an explicit bijection Γ from

- the set of nested pairs $\left(\mu_{1}, \mu_{2}\right) \in \mathcal{D}_{n}^{2}$, where μ_{2} is a steep path ending in r east-steps, to
- the set of nested pairs $\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}\right) \in \mathcal{D}_{n}^{2}$, where μ_{1}^{\prime} is a bounce path that touches the diagonal $r+1$ times.

The Steep-Bounce Zeta Map

Parabolic
Cataland
Henri Mühle

Theorem (C. Ceballos, W. Fang, 煟; 2018)

For every $n>0$, the map Γ restricts to a bijection from

- the set of pairs $\left(\mu, \mu_{\text {steep }}\right)$, where $\mu \in \mathcal{D}_{n}$, to
- the set of pairs $\left(v_{\text {bounce }}, v\right)$, where $v \in \mathcal{D}_{n}$.

Moreover, if $\left(v_{\text {bounce }}, v\right)=\Gamma\left(\mu, \mu_{\text {steep }}\right)$, then $v=\zeta(\mu)$.

Recovering the Zeta Map

Parabolic Cataland

Henri Mühle

Parabolic
 Cataland
 Posets in
 Parabolic Cataland
 A Hop
 Algebra on
 Pipe Dream
 The Zeta Map

Recovering the Zeta Map

Parabolic Cataland

Henri Mühle

Parabolic Cataland
 Posets in Parabolic Cataland
 A Hop
 Algebra on
 Pipe Dreams

The Zeta Map

Recovering the Zeta Map

Parabolic Cataland

Henri Mühle

Parabolic Cataland
 Posets in Parabolic Cataland
 Aloebra on
 Pipe Dreans

The Zeta Map

Recovering the Zeta Map

Parabolic Cataland

Recovering the Zeta Map

Parabolic
Cataland
Henri Mühle

Recovering the Zeta Map

Parabolic Cataland

Recovering the Zeta Map

Parabolic Cataland

Recovering the Zeta Map

Parabolic
Cataland
Henri Mühle

Cataland Posets in Parabolic Cataland A Hopf Algebra on Pipe Dreams

Recovering the Zeta Map

Parabolic Cataland

Henri Mühle

$\stackrel{\zeta}{\leftrightarrows}$

Recovering the Zeta Map

Henri Mühle

Parabolic
Cataland
Posets in
Parabolic
Cataland

Thank You.

Outline

Parabolic Cataland

Henri Mühle

Bijections in
Parabolic
Cataland
Chapoton
Triangles in
Parabolic
Cotat
The Ballot
Case
Miscollaneous
(5) Bijections in Parabolic Cataland

- Chapoton Triangles in Parabolic Cataland (D) The Ballot Case (8) Miscellaneous

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Chapoton Triangles in Parabolie Cataturnt

Theorem ((\%, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Theorem (各, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (焱, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem ((*, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (炎, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem (焜, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem (焜, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

- $0 \quad \circ \quad 0$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$0 \quad 0 \quad 0$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$0 \quad 0 \quad 0$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$0 \quad 0 \quad 0$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$0 \quad 0 \quad 0$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$0 \quad 0 \quad 0$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem (*, N. Williams; 2015)
For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$12 \circ \quad \circ \quad+$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem ($火$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to NC_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$1211 \quad \bullet \square$

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem ($火$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

12	11	10

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Cataland

Theorem (($\%$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

12	3	11	1	2	5	4	9	10	7	8	6

$\mathfrak{S}_{\alpha}(231) \cong N C_{\alpha}$

Parabolic Catalan

Theorem ($\%$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $\mathfrak{S}_{\alpha}(231)$ to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

12	3	11	13	1	2	5	4	9	10	15	7	8
14	6											


```
NC}\mp@subsup{\alpha}{\alpha}{\cong
```

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Chapoton Triangles in Parabolie Cataturnt

Theorem (*, N. Williams; 2015)
For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem (焜, N. Williams; 2015)
For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem (\nless, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem (\nless, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem (\nless, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem ($(\underset{\sim}{6}, \mathrm{~N}$. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem ($(\underset{\sim}{6}, \mathrm{~N}$. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem ($火$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem ($\underset{*}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($(\underset{\sim}{0}, ~ N . ~ W i l l i a m s ; ~ 2015) ~$

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($(\underset{\sim}{6}, \mathrm{~N}$. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem ((*, N. Williams; 2015)
For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem ((*, N. Williams; 2015)
For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem ((*, N. Williams; 2015)
For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem ((*, N. Williams; 2015)
For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem ((*, N. Williams; 2015)
For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($\%$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($\%$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($\%$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($\%$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem (焜, N. Williams; 2015)
For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem (焜, N. Williams; 2015)
For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($(\underset{\sim}{6}, \mathrm{~N}$. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($(\underset{\sim}{6}, \mathrm{~N}$. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($(\underset{\sim}{6}, \mathrm{~N}$. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($\underset{\sim}{*}$, N. Williams; 2015)

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($(\underset{\sim}{0}, ~ N . ~ W i l l i a m s ; ~ 2015) ~$

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$N C_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem ($(\underset{\sim}{0}, ~ N . ~ W i l l i a m s ; ~ 2015) ~$

For every composition α, there is an explicit bijection from $N C_{\alpha}$ to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Chapoton Triangles in Parabolic Cata! Case

Theorem (C. Ceballos, W. Fang, \&\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic
Cataland
Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

123111312549101578146

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

123111312549101578146

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

123111312549101578146

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

123111312549101578146

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

123111312549101578146

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

123111312549101578146

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

123111312549101578146

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

123111312549101578146

$\mathbb{T}_{\alpha} \cong \mathfrak{S}_{\alpha}(231)$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $\mathfrak{S}_{\alpha}(231)$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

123111312549101578146

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Chapoton Triangles in Parabolie Cataturt

Theorem (C. Ceballos, W. Fang, \&\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 冬; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 烙; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 烙; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 冬; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&硧; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

For every composition α, there is an explicit bijection from \mathbb{T}_{α} to N_{α}.

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

Theorem (C. Ceballos, W. Fang, \&硧; 2018)

For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$ N_{α}.

For every composition α, there is an explicit bijection from \mathbb{T}_{α} to

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 炎; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to $N C_{\alpha}$.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong N C_{\alpha}$

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$ $N C_{\alpha}$.

For every composition α, there is an explicit bijection from \mathbb{T}_{α} to

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Chapoton Triangles in Parabolic Catatur

Theorem (C. Ceballos, W. Fang, \&\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 荧; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, ** 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, ** 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, ** 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, ** 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \%\% 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 荧; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 领; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&甜; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&甜; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&甜; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&甜; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&甜; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, \&甜; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

$\mathbb{T}_{\alpha} \cong \mathcal{D}_{\alpha}$

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland

Theorem (C. Ceballos, W. Fang, 各; 2018)
For every composition α, there is an explicit bijection from \mathbb{T}_{α} to \mathcal{D}_{α}.

$$
\alpha=(1,3,1,2,4,3,1)
$$

Outline

Parabolic Cataland

Henri Mühle

Bijections in
Parabolic
Catalana
Chapoton
Triangles in
Parabolic
Cataland
The Ballet
Case
Micem llaneous

- Bijections in Parabolic Cataland

6 Chapoton Triangles in Parabolic Cataland
(D) The Ballot Case
(b) Miscellaneous

Statistics on Dyck Paths

Parabolic Cataland

Henri Mühle
Parabolic
Cataland
Chapoton
Triangles in
Parabolic
Cataland
The Ballot
Case
Micere laneous

- $\mu \in \mathcal{D}_{\alpha}$

$$
\alpha=(1,3,1,2,4,3,1)
$$

Statistics on Dyck Paths

Parabolic
Cataland
Henri Mühle

- $\mu \in \mathcal{D}_{\alpha}$
- peak: coordinate preceded by N and followed by E

$$
\alpha=(1,3,1,2,4,3,1)
$$

Statistics on Dyck Paths

Parabolic
Cataland
Henri Mühle

- $\mu \in \mathcal{D}_{\alpha}$
- peak: coordinate preceded by N and followed by E

$$
\alpha=(1,3,1,2,4,3,1)
$$

Statistics on Dyck Paths

Parabolic
Cataland
Henri Mühle

- $\mu \in \mathcal{D}_{\alpha}$
- peak: coordinate preceded by N and followed by E

$$
\begin{gathered}
\alpha=(1,3,1,2,4,3,1) \\
\text { peak }=8
\end{gathered}
$$

Statistics on Dyck Paths

Parabolic Cataland

$$
\begin{gathered}
\alpha=(1,3,1,2,4,3,1) \\
\text { peak }=8
\end{gathered}
$$

- $\mu \in \mathcal{D}_{\alpha}$
- peak: coordinate preceded by N and followed by E
- bounce peak: common peak of μ and v_{α}

Statistics on Dyck Paths

Parabolic Cataland

$$
\begin{gathered}
\alpha=(1,3,1,2,4,3,1) \\
\text { peak }=8
\end{gathered}
$$

- $\mu \in \mathcal{D}_{\alpha}$
- peak: coordinate preceded by N and followed by E
- bounce peak: common peak of μ and v_{α}

Statistics on Dyck Paths

Parabolic Cataland

- $\mu \in \mathcal{D}_{\alpha}$
Parabolic
Cataland

$$
\begin{array}{r}
\alpha=(1,3,1,2,4,3,1) \\
\text { peak }=8 \\
\text { bouncepeak }=2
\end{array}
$$

- peak: coordinate preceded by N and followed by E
- bounce peak: common peak of μ and v_{α}

Statistics on Dyck Paths

Parabolic Cataland

- $\mu \in \mathcal{D}_{\alpha}$
Triangles in
Parabolic
Cataland

$$
\begin{array}{r}
\alpha=(1,3,1,2,4,3,1) \\
\text { peak }=8 \\
\text { bouncepeak }=2
\end{array}
$$

- peak: coordinate preceded by N and followed by E
- bounce peak: common peak of μ and v_{α}
- base peak: peak at distance 1 from v_{α}

Statistics on Dyck Paths

Parabolic Cataland

- $\mu \in \mathcal{D}_{\alpha}$
Triangles in
Parabolic
Cataland

$$
\begin{gathered}
\alpha=(1,3,1,2,4,3,1) \\
\text { peak }=8 \\
\text { bouncepeak }=2
\end{gathered}
$$

- peak: coordinate preceded by N and followed by E
- bounce peak: common peak of μ and v_{α}
- base peak: peak at distance 1 from v_{α}

Statistics on Dyck Paths

Parabolic Cataland

$$
\alpha=(1,3,1,2,4,3,1)
$$

$$
\begin{array}{r}
\text { peak }=8 \\
\text { bouncepeak }=2 \\
\text { basepeak }=1
\end{array}
$$

- $\mu \in \mathcal{D}_{\alpha}$
- peak: coordinate preceded by N and followed by E
- bounce peak: common peak of μ and v_{α}
- base peak: peak at distance 1 from v_{α}

Statistics on Dyck Paths

Parabolic Cataland

- $\mu \in \mathcal{D}_{\alpha}$
- peak: coordinate preceded by N and followed by E
- bounce peak: common peak of μ and v_{α}
- base peak: peak at distance 1 from v_{α}
- H-triangle:

$$
H_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mu \in \mathcal{D}_{\alpha}} s^{\operatorname{peak}(\mu)-\operatorname{bouncepeak}(\mu)} t^{\operatorname{basepeak}(\mu)}
$$

$$
\alpha=(1,3,1,2,4,3,1)
$$

$$
\text { peak }=8
$$

bouncepeak $=2$
basepeak $=1$

The Parabolic H-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic
Cataland
Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic
Cataland
Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic
Cataland
Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic
Cataland
Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic
Cataland
Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic
Cataland
Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic H-Triangle

Parabolic
 Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
H_{(1,2,1)}(s, t)=s^{2} t^{2}+2 s^{2} t+s^{2}+2 s t+3 s+1
$$

Statistics on Noncrossing Partitions

Parabolic
Cataland
Henri Mühle

$$
\text { - } \mathbf{P} \in N C_{\alpha}
$$

$$
\alpha=(1,3,1,2,4,3,1)
$$

Statistics on Noncrossing Partitions

Parabolic Cataland

Henri Mühle

- $\mathbf{P} \in N C_{\alpha}$
- bump: number of bumps of \mathbf{P}

$$
\alpha=(1,3,1,2,4,3,1)
$$

Statistics on Noncrossing Partitions

Parabolic Cataland

Henri Mühle

- $\mathbf{P} \in N C_{\alpha}$
- bump: number of bumps of \mathbf{P}

$$
\begin{gathered}
\alpha=(1,3,1,2,4,3,1) \\
\text { bump }=7
\end{gathered}
$$

Statistics on Noncrossing Partitions

Parabolic Cataland

- $\mathbf{P} \in N C_{\alpha}$
- bump: number of bumps of \mathbf{P}
- $\mu_{\mathcal{N C}_{\alpha}}$: Möbius function of $\mathcal{N C}{ }_{\alpha}$

$$
\begin{gathered}
\alpha=(1,3,1,2,4,3,1) \\
\text { bump }=7
\end{gathered}
$$

Statistics on Noncrossing Partitions

Parabolic Cataland

- $\mathbf{P} \in N C_{\alpha}$
- bump: number of bumps of \mathbf{P}
- $\mu_{\mathcal{N C}_{\alpha}}$: Möbius function of $\mathcal{N C}{ }_{\alpha}$
- M-triangle:

$$
M_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mathbf{P}, \mathbf{P}^{\prime} \in N C_{\alpha}} \mu_{\mathcal{N C} \mathcal{C}_{\alpha}}\left(\mathbf{P}, \mathbf{P}^{\prime}\right) s^{\text {bump }\left(\mathbf{P}^{\prime}\right)} t^{\text {bump }(\mathbf{P})}
$$

$$
\begin{gathered}
\alpha=(1,3,1,2,4,3,1) \\
\text { bump }=7
\end{gathered}
$$

The Parabolic M-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

The Parabolic M-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
M_{(1,2,1)}(s, t)=1
$$

as as asas ascos aros

The Parabolic M-Triangle

Parabolic Cataland

Henri Mühle

Bijections in
Parabolic

Chapoton Triangles in Parabolic Cataland

$$
\alpha=(1,2,1)
$$

$$
M_{(1,2,1)}(s, t)=1+5 s t
$$

as as asas ascos aros

The Parabolic M-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
M_{(1,2,1)}(s, t)=1+5 s t+4 s^{2} t^{2}
$$

-

The Parabolic M-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
M_{(1,2,1)}(s, t)=1+5 s t+4 s^{2} t^{2}-5 s
$$

The Parabolic M-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
M_{(1,2,1)}(s, t)=1+5 s t+4 s^{2} t^{2}-5 s-10 s^{2} t
$$

The Parabolic M-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
M_{(1,2,1)}(s, t)=1+5 s t+4 s^{2} t^{2}-5 s-10 s^{2} t+6 s^{2}
$$

The Parabolic M-Triangle

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
M_{(1,2,1)}(s, t)=4 s^{2} t^{2}-10 s^{2} t+6 s^{2}+5 s t-5 s+1
$$

as as asas asce anos

An Enumerative Connection

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cotoland

Chapoton Triangles in Parabolic Cataland

- H-triangle:

$$
H_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mu \in \mathcal{D}_{\alpha}} s^{\operatorname{peak}(\mu)-\operatorname{bouncepeak}(\mu)} t^{\operatorname{basepeak}(\mu)}
$$

- M-triangle:

$$
M_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mathbf{P}, \mathbf{P}^{\prime} \in N C_{\alpha}} \mu_{\mathcal{N C} C_{\alpha}}\left(\mathbf{P}, \mathbf{P}^{\prime}\right) s^{\text {bump }\left(\mathbf{P}^{\prime}\right)} t^{\text {bump }(\mathbf{P})}
$$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

- H-triangle:

$$
H_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mu \in \mathcal{D}_{\alpha}} s^{\operatorname{peak}(\mu)-\operatorname{bouncepeak}(\mu)} t^{\operatorname{basepeak}(\mu)}
$$

- M-triangle:

$$
M_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mathbf{P}, \mathbf{P}^{\prime} \in N C_{\alpha}} \mu_{\mathcal{N C}_{\alpha}}\left(\mathbf{P}, \mathbf{P}^{\prime}\right) s^{\text {bump }\left(\mathbf{P}^{\prime}\right)} t^{\text {bump }(\mathbf{P})}
$$

Conjecture (\$; 2018)

The following equation holds if and only if a has r parts, where either the first or the last may exceed 1:

$$
H_{\alpha}(s, t)=(s(t-1)+1)^{r-1} M_{\alpha}\left(\frac{s(t-1)}{(s(t-1)+1}, \frac{t}{t-1}\right) .
$$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

- H-triangle:

$$
H_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mu \in \mathcal{D}_{\alpha}} s^{\operatorname{peak}(\mu)-\operatorname{bouncepeak}(\mu)} t^{\operatorname{basepeak}(\mu)}
$$

- M-triangle:

$$
M_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mathbf{P}, \mathbf{P}^{\prime} \in \mathrm{NC}_{\alpha}} \mu_{\mathcal{N C}_{\alpha}}\left(\mathbf{P}, \mathbf{P}^{\prime}\right) s^{\text {bump }\left(\mathbf{P}^{\prime}\right)} t^{\text {bump }(\mathbf{P})}
$$

Conjecture ((\%; 2018)

The following equation holds if and only if α has r parts, where either the first or the last may exceed 1:

$$
H_{\alpha}(s, t)=(s(t-1)+1)^{r-1} M_{\alpha}\left(\frac{s(t-1)}{(s(t-1)+1}, \frac{t}{t-1}\right) .
$$

If $\alpha=(1,1, \ldots, 1)$, then this is a theorem.

An Enumerative Connection

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cotoland

Chapoton Triangles in Parabolic Cataland

- H-triangle:

$$
H_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mu \in \mathcal{D}_{\alpha}} s^{\operatorname{peak}(\mu)-\operatorname{bouncepeak}(\mu)} t^{\operatorname{basepeak}(\mu)}
$$

- \bar{M}-triangle:

$$
\bar{M}_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mathbf{P}, \mathbf{P}^{\prime} \in N C_{\alpha}} \mu_{\mathrm{CLO}\left(\mathcal{T}_{\alpha}\right)}\left(\mathbf{P}, \mathbf{P}^{\prime}\right) s^{\text {bump }\left(\mathbf{P}^{\prime}\right)} t^{\text {bump }(\mathbf{P})}
$$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

- \bar{M}-triangle:

$$
\bar{M}_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mathbf{P}, \mathbf{P}^{\prime} \in N C_{\alpha}} \mu_{\mathrm{CLO}\left(\mathcal{T}_{\alpha}\right)}\left(\mathbf{P}, \mathbf{P}^{\prime}\right) s^{\text {bump }\left(\mathbf{P}^{\prime}\right)} t^{\text {bump }(\mathbf{P})}
$$

Conjecture (\%; 2018)

The following equation holds if and only if a has r parts, of which at most one exceeds 1:

$$
H_{\alpha}(s, t)=(s(t-1)+1)^{r-1} \bar{M}_{\alpha}\left(\frac{s(t-1)}{(s(t-1)+1}, \frac{t}{t-1}\right) .
$$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

- H-triangle:

$$
H_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mu \in \mathcal{D}_{\alpha}} s^{\operatorname{peak}(\mu)-\operatorname{bouncepeak}(\mu)} t^{\operatorname{basepeak}(\mu)}
$$

- \bar{M}-triangle:

$$
\bar{M}_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mathbf{P}, \mathbf{P}^{\prime} \in N C_{\alpha}} \mu_{\mathrm{CLO}\left(\mathcal{T}_{\alpha}\right)}\left(\mathbf{P}, \mathbf{P}^{\prime}\right) s^{\operatorname{bump}\left(\mathbf{P}^{\prime}\right)} t^{\operatorname{bump}(\mathbf{P})}
$$

Conjecture (䀂; 2018)

The following rational function is a polynomial with positive integer coefficients if and only if a has r parts, of which at most one exceeds 1:

$$
F_{\alpha}(s, t) \stackrel{\text { def }}{=} s^{r-1} H_{\alpha}\left(\frac{s+1}{s}, \frac{t+1}{s+1}\right) .
$$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

- H-triangle:

$$
H_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mu \in \mathcal{D}_{\alpha}} s^{\operatorname{peak}(\mu)-\operatorname{bouncepeak}(\mu)} t^{\operatorname{basepeak}(\mu)}
$$

- \bar{M}-triangle:

$$
\bar{M}_{\alpha}(s, t) \stackrel{\text { def }}{=} \sum_{\mathbf{P}, \mathbf{P}^{\prime} \in N C_{\alpha}} \mu_{\mathrm{CLO}\left(\mathcal{T}_{\alpha}\right)}\left(\mathbf{P}, \mathbf{P}^{\prime}\right) s^{\operatorname{bump}\left(\mathbf{P}^{\prime}\right)} t^{\operatorname{bump}(\mathbf{P})}
$$

Conjecture (\%; 2018)

The following rational function is a polynomial with positive integer coefficients if and only if a has r parts, of which at most one exceeds 1:

$$
F_{\alpha}(s, t) \stackrel{\text { def }}{=} s^{r-1} H_{\alpha}\left(\frac{s+1}{s}, \frac{t+1}{s+1}\right) .
$$

If $\alpha=(1,1, \ldots, 1)$, then this is a theorem.

An Enumerative Connection

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Catoland

Chapoton Triangles in Parabolic Cataland

Question
Which family of combinatorial objects realizes F_{α} ? What are the statistics?

An Enumerative Connection

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
H_{(1,2,1)}(s, t)=s^{2} t^{2}+2 s^{2} t+s^{2}+2 s t+3 s+1
$$

Chapoton Triangles in Parabolic Cataland

An Enumerative Connection

Parabolic Cataland

Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
\begin{gathered}
H_{(1,2,1)}(s, t)=s^{2} t^{2}+2 s^{2} t+s^{2}+2 s t+3 s+1 \\
\bar{M}_{(1,2,1)}(s, t)=4 s^{2} t^{2}-9 s^{2} t+5 s^{2}+5 s t-5 s+1
\end{gathered}
$$

An Enumerative Connection

Parabolic
Cataland
Henri Mühle

$$
\alpha=(1,2,1)
$$

$$
\begin{gathered}
H_{(1,2,1)}(s, t)=s^{2} t^{2}+2 s^{2} t+s^{2}+2 s t+3 s+1 \\
\bar{M}_{(1,2,1)}(s, t)=4 s^{2} t^{2}-9 s^{2} t+5 s^{2}+5 s t-5 s+1 \\
F_{(1,2,1)}(s, t)=5 s^{2}+4 s t+t^{2}+9 s+4 t+4
\end{gathered}
$$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

$$
\alpha=(2,2)
$$

Bijections in
Parabolic
Catoland

Chapoton
Triangles in
Parabolic
Cataland
The Ballot
Case
Micem laneous
$47 / 33$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

$$
\alpha=(2,2)
$$

$$
H_{(2,2)}(s, t)=s^{2}+s t+3 s+1
$$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

$$
\alpha=(2,2)
$$

$$
\begin{aligned}
& H_{(2,2)}(s, t)=s^{2}+s t+3 s+1 \\
& \bar{M}_{(2,2)}(s, t)=s^{2} t^{2}-2 s^{2} t+s^{2}+4 s t-4 s+1
\end{aligned}
$$

An Enumerative Connection

Parabolic Cataland

Henri Mühle

$$
\alpha=(2,2)
$$

$$
\begin{aligned}
& H_{(2,2)}(s, t)=s^{2}+s t+3 s+1 \\
& \bar{M}_{(2,2)}(s, t)=s^{2} t^{2}-2 s^{2} t+s^{2}+4 s t-4 s+1 \\
& F_{(2,2)}(s, t)=\frac{5 s^{2}+s t+6 s+1}{s}
\end{aligned}
$$

Outline

Parabolic Cataland

Henri Mühle

Bijections in
Parabolic
Cotoland
Chapoton Triangles in Parabolic
Cathlat
The Ballot Case

Miscellaneous

- Bijections in Parabolic Cataland
- Chapoton Triangles in Parabolic Cataland
(7) The Ballot Case

B Miscellaneous

The Ballot Case

Parabolic Cataland

Henri Mühle

- $\alpha_{(n, t)} \stackrel{\text { def }}{=}(t, 1,1, \ldots, 1)$ composition of n

The Ballot Case

Parabolic Cataland

Henri Mühle

- $\alpha_{(n ; t)} \stackrel{\text { def }}{=}(t, 1,1, \ldots, 1)$ composition of n
- $\alpha_{(n ; t)}$-Dyck paths are essentially Ballot paths

The Ballot Case

Parabolic Cataland

Theorem (解; 2018)

For $n>0$ and $1 \leq t \leq n$, the common cardinality of the sets $\mathfrak{S}_{\alpha_{(n, t)}}(231), N C_{\alpha_{(n, t)},}, \mathcal{D}_{\alpha_{(n, t)},}$ and $\mathbb{T}_{\alpha_{(n, t)}}$ is

$$
\operatorname{Cat}\left(\alpha_{(n ; t)}\right) \stackrel{\text { def }}{=} \frac{t+1}{n+1}\binom{2 n-t}{n-t}
$$

The Ballot Case

Parabolic Cataland

Theorem (解; 2018)

For $n>0$ and $1 \leq t \leq n$, the number of noncrossing $\alpha_{(n ; t)}$-partitions with exactly k bumps is

$$
\binom{n}{k}\binom{n-t}{k}-\binom{n-1}{k-1}\binom{n-t+1}{k+1}
$$

The Ballot Case

Parabolic Cataland

Henri Mühle

Bijections in Parabolic Cataland Chapoton Triangles in Parabolic Cataland

- $\alpha_{(n ; t)} \stackrel{\text { def }}{=}(t, 1,1, \ldots, 1)$ composition of n
- $\alpha_{(n ; t)}$-Dyck paths are essentially Ballot paths

> Theorem (\%; 2018)
> For $n>0$ and $1 \leq t \leq n$, we have $\operatorname{CLO}\left(\mathcal{T}_{(n, t)}\right) \cong \mathcal{N C} \alpha_{(n, t)}$.

The Ballot Case

Parabolic Cataland

- $\alpha_{(n ; t)} \stackrel{\text { def }}{=}(t, 1,1, \ldots, 1)$ composition of n
- $\alpha_{(n ; t)}$-Dyck paths are essentially Ballot paths
- zeta polynomial: evaluation at $q+1$ counts q-multichains

The Ballot Case

Parabolic Cataland

- $\alpha_{(n, t)} \stackrel{\text { def }}{=}(t, 1,1, \ldots, 1)$ composition of n
- $\alpha_{(n ; t)}$-Dyck paths are essentially Ballot paths
- zeta polynomial: evaluation at $q+1$ counts q-multichains

Theorem (C. Krattenthaler; 2019)
For $n>0$ and $1 \leq t \leq n$, the zeta polynomial of $\mathcal{N C}_{\alpha_{(n, t)}}$ is

$$
\mathcal{Z}_{\mathcal{N C}_{\alpha_{(n, t)}}}(q)=\frac{t(q-1)+1}{n(q-1)+1}\binom{n q-t}{n-t} .
$$

The Ballot Case

Parabolic Cataland

Theorem (C. Krattenthaler; 2019)
For $n>0$ and $1 \leq t \leq n$, the number of maximal chains in $\mathcal{N C}_{\alpha_{(n ; t)}}$ is $t n^{n-t-1}$.

Outline

Parabolic Cataland

Henri Mühle

Bijections in
Parabolic

- Bijections in Parabolic Cataland

Catoland
Chapoton Triangles i Pambolic
Cataland
The Ballot Case

Miscellaneous

- Chapoton Triangles in Parabolic Cataland
- The Ballot Case

8 Miscellaneous

Parabolic Quotients of the Symmetric Group

Parabolic Cataland

Henri Mühle

- \mathfrak{S}_{n} : symmetric group of degree n
- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$: composition of n

Parabolic Quotients of the Symmetric Group

Parabolic Cataland

Henri Mühle

- \mathfrak{S}_{n} : symmetric group of degree n
- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$: composition of n
- let $s_{i} \stackrel{\text { def }}{=} \alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}$

Parabolic Quotients of the Symmetric Group

Parabolic Cataland

Henri Mühle

- \mathfrak{S}_{n} : symmetric group of degree n
- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$: composition of n
- let $s_{i} \stackrel{\text { def }}{=} \alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}$
- α-region: a set $\left\{s_{i}+1, s_{i}+2, \ldots, s_{i+1}\right\}$

Parabolic Quotients of the Symmetric Group

Parabolic Cataland

Henri Mühle

- \mathfrak{S}_{n} : symmetric group of degree n
- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$: composition of n
- let $s_{i} \stackrel{\text { def }}{=} \alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}$
- α-region: a set $\left\{s_{i}+1, s_{i}+2, \ldots, s_{i+1}\right\}$
- parabolic quotient:

$$
\mathfrak{S}_{\alpha} \stackrel{\text { def }}{=} \mathfrak{S}_{n} /\left(\mathfrak{S}_{\alpha_{1}} \times \mathfrak{S}_{\alpha_{2}} \times \cdots \times \mathfrak{S}_{\alpha_{r}}\right)
$$

Parabolic Quotients of the Symmetric Group

Parabolic Cataland

Henri Mühle

- \mathfrak{S}_{n} : symmetric group of degree n
- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$: composition of n
- let $s_{i} \stackrel{\text { def }}{=} \alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}$
- α-region: a set $\left\{s_{i}+1, s_{i}+2, \ldots, s_{i+1}\right\}$
- parabolic quotient:

$$
\begin{aligned}
\mathfrak{S}_{\alpha} \stackrel{\text { def }}{=}\left\{w \in \mathfrak{S}_{n} \mid w(k)<\right. & w(k+1) \\
& \text { for all } \left.k \notin\left\{s_{1}, s_{2}, \ldots, s_{r-1}\right\}\right\}
\end{aligned}
$$

Parabolic Quotients of the Symmetric Group

- \mathfrak{S}_{n} : symmetric group of degree n
- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$: composition of n
- let $s_{i} \stackrel{\text { def }}{=} \alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}$
- α-region: a set $\left\{s_{i}+1, s_{i}+2, \ldots, s_{i+1}\right\}$
- parabolic quotient:

$$
\mathfrak{S}_{\alpha} \stackrel{\text { def }}{=}\left\{w \in \mathfrak{S}_{n} \mid w(k)<w(k+1)\right.
$$

$$
\text { for all } \left.k \notin\left\{s_{1}, s_{2}, \ldots, s_{r-1}\right\}\right\}
$$

$n=4$| 1234 | 1243 | 1324 | 1342 | 1423 | 1432 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2134 | 2143 | 2314 | 2341 | 2413 | 2431 | |
| | 3124 | 3142 | 3214 | 3241 | 3412 | 3421 |
| | 4123 | 4132 | 4213 | 4231 | 4312 | 4321 |

Parabolic Quotients of the Symmetric Group

- \mathfrak{S}_{n} : symmetric group of degree n
- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$: composition of n
- let $s_{i} \stackrel{\text { def }}{=} \alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}$
- α-region: a set $\left\{s_{i}+1, s_{i}+2, \ldots, s_{i+1}\right\}$
- parabolic quotient:

\[

\]

Parabolic Quotients of the Symmetric Group

- \mathfrak{S}_{n} : symmetric group of degree n
- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$: composition of n
- let $s_{i} \stackrel{\text { def }}{=} \alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}$
- α-region: a set $\left\{s_{i}+1, s_{i}+2, \ldots, s_{i+1}\right\}$
- parabolic quotient:

$\mathfrak{S}_{\alpha} \stackrel{\text { def }}{=}\left\{w \in \mathfrak{S}_{n} \mid w(k)<w(k+1)\right.$						
$\begin{aligned} n & =4 \\ \alpha & =(1,2,1) \end{aligned}$	1234	1243	1) 4	1342	1) ${ }^{3}$	1) 2
	2134	2143	2) 4	2341	2 $\times 1$	2) 1
	3124	3142	3) 4	3241	$3{ }^{2}$	3) 1
	4123	4132	4) 3	4231	4)2	4) 1

Möbius Function

Parabolic Cataland

- $\mathcal{P}=(P, \leq)$ finite poset
- Möbius function: the map $\mu_{\mathcal{P}}: P \times P \rightarrow \mathbb{Z}$ given by

$$
\mu_{\mathcal{P}}(x, y)= \begin{cases}1, & \text { if } x=y \\ -\sum_{x \leq z<y} \mu_{\mathcal{P}}(x, z), & \text { if } x<y \\ 0, & \text { otherwise }\end{cases}
$$

Möbius Function

Parabolic Cataland

Henri Mühle

- $\mathcal{P}=(P, \leq)$ finite poset
- Möbius function: the map $\mu_{\mathcal{P}}: P \times P \rightarrow \mathbb{Z}$ given by

$$
\mu_{\mathcal{P}}(x, y)= \begin{cases}1, & \text { if } x=y \\ -\sum_{x \leq z<y} \mu_{\mathcal{P}}(x, z), & \text { if } x<y \\ 0, & \text { otherwise }\end{cases}
$$

Theorem (G.-C. Rota; 1964)

Let $\mathcal{P}=(P, \leq)$ be a finite poset, and let $f, g: P \times P \rightarrow \mathbb{Z}$. It holds $f(y)=\sum_{x \leq y} g(x)$ if and only if $g(y)=\sum_{x \leq y} g(x) \mu_{\mathcal{P}}(x, y)$.

Möbius Function

Parabolic Cataland

Henri Mühle

- $\mathcal{P}=(P, \leq)$ finite bounded poset; 0̂, î least/greatest element
- Möbius function: the map $\mu_{\mathcal{P}}: P \times P \rightarrow \mathbb{Z}$ given by

$$
\mu_{\mathcal{P}}(x, y)= \begin{cases}1, & \text { if } x=y \\ -\sum_{x \leq z<y} \mu_{\mathcal{P}}(x, z), & \text { if } x<y \\ 0, & \text { otherwise }\end{cases}
$$

Theorem (P. Hall; 1936)

Let $\mathcal{P}=(P, \leq)$ be a finite bounded poset. The reduced Euler characteristic of the order complex of $(P \backslash\{\hat{0}, \hat{1}\}, \leq)$ equals $\mu_{\mathcal{P}}(\hat{0}, \hat{1})$ up to sign.

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- join irreducible: $j=x \vee y$ implies $j \in\{x, y\} \quad \rightsquigarrow \mathcal{J}(\mathcal{L})$
- meet irreducible: $m=x \wedge y$ implies $m \in\{x, y\}$

$$
\rightsquigarrow \mathcal{M}(\mathcal{L})
$$

- length: maximal length of a chain

Interlude: Extremal Lattices

Parabolic
Cataland
Henri Mühle

- $\mathcal{L}=(L, \leq)$ finite lattice
- extremal: $|\mathcal{J}(\mathcal{L})|=\ell(\mathcal{L})=|\mathcal{M}(\mathcal{L})|$

$$
\begin{gathered}
|\mathcal{J}(\mathcal{L})|=4 \\
|\mathcal{M}(\mathcal{L})|=4 \\
\ell(\mathcal{L})=3
\end{gathered}
$$

Interlude: Extremal Lattices

Parabolic
Cataland
Henri Mühle

- $\mathcal{L}=(L, \leq)$ finite lattice
- extremal: $|\mathcal{J}(\mathcal{L})|=\ell(\mathcal{L})=|\mathcal{M}(\mathcal{L})|$

$$
\begin{gathered}
|\mathcal{J}(\mathcal{L})|=3 \\
|\mathcal{M}(\mathcal{L})|=3 \\
\ell(\mathcal{L})=3
\end{gathered}
$$

Interlude: Extremal Lattices

Parabolic Cataland

Henri Mühle

- $\mathcal{L}=(L, \leq)$ finite lattice
- extremal: $|\mathcal{J}(\mathcal{L})|=\ell(\mathcal{L})=|\mathcal{M}(\mathcal{L})|$
- C : $x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{\ell(\mathcal{L})}$

Bijections in
Parabolic
Cataland

Chapoton Triangles ir Parabolic Cataland The Ballot Case

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- extremal: $|\mathcal{J}(\mathcal{L})|=\ell(\mathcal{L})=|\mathcal{M}(\mathcal{L})|$
- C : $x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{\ell(\mathcal{L})}$
- sort irreducibles such that

$$
j_{1} \vee j_{2} \vee \cdots \vee j_{k}=x_{k}=m_{k+1} \wedge m_{k+2} \wedge \cdots \wedge m_{\ell(\mathcal{L})}
$$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- extremal: $|\mathcal{J}(\mathcal{L})|=\ell(\mathcal{L})=|\mathcal{M}(\mathcal{L})|$
- C : $x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{\ell(\mathcal{L})}$
- sort irreducibles such that

$$
j_{1} \vee j_{2} \vee \cdots \vee j_{k}=x_{k}=m_{k+1} \wedge m_{k+2} \wedge \cdots \wedge m_{\ell(\mathcal{L})}
$$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- extremal: $|\mathcal{J}(\mathcal{L})|=\ell(\mathcal{L})=|\mathcal{M}(\mathcal{L})|$
- C : $x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{\ell(\mathcal{L})}$
- sort irreducibles such that

$$
j_{1} \vee j_{2} \vee \cdots \vee j_{k}=x_{k}=m_{k+1} \wedge m_{k+2} \wedge \cdots \wedge m_{\ell(\mathcal{L})}
$$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$
- orthogonal pair: (X, Y) such that $X \cap Y=\varnothing$ and no arrows from X to Y

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$
- orthogonal pair: (X, Y) such that $X \cap Y=\varnothing$ and no arrows from X to Y
- order: $(X, Y) \sqsubseteq\left(X^{\prime}, Y^{\prime}\right)$ if and only if $X \subseteq X^{\prime}$

Interlude: Extremal Lattices

Parabolic Cataland

Henri Mühle

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$
- orthogonal pair: (X, Y) such that $X \cap Y=\varnothing$ and no arrows from X to Y
- order: $(X, Y) \sqsubseteq\left(X^{\prime}, Y^{\prime}\right)$ if and only if $X \subseteq X^{\prime}$

Theorem (G. Markowsky; 1992)

Every finite extremal lattice is isomorphic to the lattice of maximal orthogonal pairs of its Galois graph.

This is a special case of a formal context.

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$
- orthogonal pair: (X, Y) such that $X \cap Y=\varnothing$ and no arrows from X to Y
- order: $(X, Y) \sqsubseteq\left(X^{\prime}, Y^{\prime}\right)$ if and only if $X \subseteq X^{\prime}$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$
- orthogonal pair: (X, Y) such that $X \cap Y=\varnothing$ and no arrows from X to Y
- order: $(X, Y) \sqsubseteq\left(X^{\prime}, Y^{\prime}\right)$ if and only if $X \subseteq X^{\prime}$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$
- orthogonal pair: (X, Y) such that $X \cap Y=\varnothing$ and no arrows from X to Y
- order: $(X, Y) \sqsubseteq\left(X^{\prime}, Y^{\prime}\right)$ if and only if $X \subseteq X^{\prime}$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$
- orthogonal pair: (X, Y) such that $X \cap Y=\varnothing$ and no arrows from X to Y
- order: $(X, Y) \sqsubseteq\left(X^{\prime}, Y^{\prime}\right)$ if and only if $X \subseteq X^{\prime}$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$
- orthogonal pair: (X, Y) such that $X \cap Y=\varnothing$ and no arrows from X to Y
- order: $(X, Y) \sqsubseteq\left(X^{\prime}, Y^{\prime}\right)$ if and only if $X \subseteq X^{\prime}$

Interlude: Extremal Lattices

Parabolic Cataland

- $\mathcal{L}=(L, \leq)$ finite lattice
- Galois graph: directed graph on $\{1,2, \ldots, \ell(\mathcal{L})\}$ with $i \rightarrow k$ if and only if $i \neq k$ and $j_{i} \not \leq m_{k}$
- orthogonal pair: (X, Y) such that $X \cap Y=\varnothing$ and no arrows from X to Y
- order: $(X, Y) \sqsubseteq\left(X^{\prime}, Y^{\prime}\right)$ if and only if $X \subseteq X^{\prime}$

